万家乐电磁炉MCXXDG(V)(AI)系列主控板维修手册 联系客服

发布时间 : 星期六 文章万家乐电磁炉MCXXDG(V)(AI)系列主控板维修手册更新完毕开始阅读fe7de81d11a6f524ccbff121dd36a32d7375c7cc

万家乐电磁炉MCXXDG(V)(AI)系列主控板维修手册

图中,其中“+”运算放大器的同相输入端;“-”表示运算放大器的反相输入端。该IC特点是,只要两相输入电压相差6mV,输出状态即可翻转。当其反相输入电压比同相输才电压高时,输出为低电平;当其反相输入电压比同相输入低时,LM339输出端内部处于开路状态,要输出高电平,必须加上拉电阻,高电平的幅值大小取决于该上拉电阻的接法及其对地部分压电阻的大小。 2.2.2 IGBT

绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。

目前有用不同材料及工艺制作的IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。

IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。

从IGBT的下述特点中可看出, 它克服了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。 IGBT的特点:

1.电流密度大, 是MOSFET的数十倍。

2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。

3.低导通电阻。在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。 4.击穿电压高, 安全工作区大, 在瞬态功率较高时不会受损坏。

5.开关速度快, 关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us, 约为GTR的10%,接近于功率MOSFET, 开关频率直达100KHz, 开关损耗仅为GTR的30%。

IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体, 是极佳的高速高压半导体功率器

件。

MCXXDG(V)(AI)系列电磁炉因机种不同而采了不同规格的IGBT,它们的参数如下: (1) H20R1202----西门子公司出品,耐压1200V, 100℃时20A,内部带阻尼二极管。 (3) H15R1202----西门子公司出品,耐压1200V, 100℃时15A,内部带阻尼二极管。

(3) FGA25N120ANTD----仙童公司出品,耐压1200V, 100℃时25A,内部带阻尼二极管。

2.2.3 开关变压器

近年来各大电磁炉厂商在各自新款电磁炉上都逐渐淘汰传统的电源变压器,取而代之使用开关电源供

电。

开关电源是采用AC—DC—AC高频电压变换技术而设计的,即将输入的220V交流电整流成直流后,再

将该直流电变换成高频脉冲电流输入开关变压器,开关变压器即可将其变换成低电压。由此可见,开关变压器依然是整个电压变换过程中的关键器件。 2.3 电路方框图

第 5 页 共 21 页

万家乐电磁炉MCXXDG(V)(AI)系列主控板维修手册

电磁炉原理简图如下:

电磁炉原理简图

220V市电经整流桥DB1整流、L1与C2滤波后得到+300V左右的直流电。此直流电经加热线圈和IGBT管构成回路。当IGBT导通时,+300V给加热线圈充电,电能转换成电磁能储存在加热线圈中;IGBT截止时,加热线圈向C1充电,随即C1又向加热线圈放电,周而复始,即加热线圈与C1构成并联谐振回路,其谐振频率由加热线圈的电感量及C1的容量决定。IGBT管在控制电路输出的PWM开关脉冲的驱动下以一定的频率工作,加热线圈中产生20KHz~40KHZ的高频交流电,于是铁质平底锅便产生强大的涡流,锅底迅速发热,加热线圈中的电磁能转化为热能。控制IGBT的导通时间,即控制了加热线圈中的储能大小,从而改变了涡流的功率,达到了热能控制的目的。

熔断器FUSE1使整机的电流被限定在一定的安全范围,当电磁炉内部出现严重的故障或电磁炉工作电流出现异常,上升到熔断器额定电流时,熔断器会迅速熔断,使电磁炉和外部电网强制断开,以保护外部电网的正常运行。

滤波电路主要用来防止电磁炉DC-AC逆变工作过程中产生的残余干扰信号污染电网。同时此电路也可抑制进行电磁炉的电网噪声,减小电网噪声对电磁炉内部单片机的不良影响,对电磁炉工作的稳定性有重要影响。 BD1为半导体整流元器件,经过滤波电路的交流电整成脉冲直流电供给逆变部分。此电路形式多采用桥式整流电路。

在电磁炉中,加热线圈与高频谐振电容的谐振的频率是设计电磁炉电路及选择元器件的重要依据之一。由于高频交变电流频率(f)由加热线圈的电感量(L)与高频谐振电容容量(C)决定的,因此高频谐振电容容量选择是非常重要的。

2.4 电路模块说明 2.4.1 电源电路 如图2.4.1所示

第 6 页 共 21 页

万家乐电磁炉MCXXDG(V)(AI)系列主控板维修手册

图2.4.1 电源电路

220V交流电压经接线片L和N输入,经保险丝FUSE1限流、D1和D8整流后,得到约300V的直流电压, EC5滤波后,经开关变压器初级线圈绕组5-3加至开关电源集成芯片IC2的5-8脚,当IC2的4脚达到18V时,IC102开始工作, 进入开关状态。开关变压器次级线圈经磁芯耦合后,得到一个交流电压经快速恢复二极管D3整流、Z1稳压管稳压、EC12滤波后得到18V,此电压供给风扇、电压比较器IC1(LM339)、IGBT驱动电路。18V经限流电阻R103供给三端稳压器IC3(78L05)的1脚,经内部稳压后,从3脚输出的5V电压经EC9、C24滤波后,供给单片机、显示板等低压电路供电。

压敏电阻主要用来防止过高的浪涌电压进入电磁炉造成机子损坏。(如雷击、电焊操作或误插380V电压时,压敏电阻就会将这部分能量消耗掉,甚至可能因通过压敏电阻的电流过大而将熔断器烧毁,将电磁炉与电网强制切断,从而达到过压保护的目的。

2.4.2 LC振荡电路 如图2.4.2所示

图2.4.2 LC振荡电路

逆变单元是电磁炉的心脏部分,整个逆变单元由LC并联谐振电路、IGBT管和一些辅助元器件组成。在IGBT管高速并且规律导通与截止状态下,LC并联谐振电路不断从电源得到因自身损耗而消耗的能量,于是成LC振荡。而IGBT管有规律导通与截止又必须与LC并联谐振电路的自然谐振频率严格同步,否则整个逆变部分都无法工作,严重的还会烧毁昂贵的IGBT功率管。

t1-t2:当开关脉冲加至IGBT的G极时, IGBT饱和导通,电流i1从电源流过线盘。由于线圈两端的电流

第 7 页 共 21 页

万家乐电磁炉MCXXDG(V)(AI)系列主控板维修手册

不允许突变,所以在t1-t2时间i1随线性上升,在t2时脉冲结束, IGBT截止。由于感抗作用,i1不能立即变0,于是向C1充电,产生充电电流i2。在t3时间,C1电荷充满,电流变为0,这时线盘的磁场能量全部转为C1的电场能量,在电容两端出现左负右正,幅度达到峰值电压,在IGBT的CE极间出现的电压实际为逆程脉冲峰压+电源电压。在t3-t4时间,C1通过线盘放电完毕,i3达到最大值,电容两端电压消失,这时电容中的电能又全部转为L1中的磁能。因感抗作用,i3不能立即变0,于是线盘两端电动势反向,即L1两端电位左正右负。因IGBT内部阻尼管的作用,C1不能继续反向充电,而是经过C2、IGBT内部阻尼二极管回流,形成电流i4。在t4时间,第二个脉冲开始到来,但这时IGBT的Ue为正,Uc为负,处于反偏状态,所以IGBT不能导通。待i4减小为0时,线盘中的磁能放完,即到t5时IGBT才开始第二次导通,产生i5以后又重复i1-i4过程,因此在线盘上就产生了与开关脉冲f(20KHz-30KHz)相同的交流电流。t4-t5的i4是IGBT内部阻尼二极管的导通电流, 在高频电流一个电流周期里,t2-t3的i2是线盘磁能对电容C1的充电电流,t3-t4的i3是逆程脉冲峰压通过线盘放电的电流,t4-t5的i4是线盘两端电动势反向时, 因IGBT内部阻尼二极管的作用,使C1不能继续反向充电, 而经过C2、IGBT内部阻尼二极管回流所形成的阻尼电流,IGBT的导通电流实际上是i1。

IGBT的Vce电压变化:在静态时,Uc为输入电源经过整流后的直流电源,t1-t2,IGBT饱和导通,Uc接近地电位,t4-t5, IGBT内部阻尼二极管导通,Uc为负压(电压为阻尼二极管的顺向压降),t2-t4,也就是LC自由振荡的半个周期,Uc上出现峰值电压,在t3时Uc达到最大值。

以上分析证实两个问题:一是在高频电流的一个周期里,只有i1是电源供给线盘的能量,所以i1的大小就决定加热功率的大小,同时脉冲宽度越大,t1-t2的时间就越长,i1就越大,反之亦然。所以要调节加热功率,只需要调节脉冲的宽度;二是LC自由振荡的半周期时间是出现峰值电压的时间,亦是IGBT的截止时间,也是开关脉冲没有到达的时间,这个时间关系是不能错位的,如峰值脉冲还没有消失,而开关脉冲己提前到来,就会出现很大的导通电流使IGBT烧坏,因此必须使开关脉冲的前沿与峰值脉冲后沿保持同步。

2.4.3 锯齿波振荡电路 如图 2.4.3所示

第 8 页 共 21 页