管道应力分析和计算 联系客服

发布时间 : 星期三 文章管道应力分析和计算更新完毕开始阅读e31dedd0bdeb19e8b8f67c1cfad6195f302be873

管道应力分析和计算 S=?1 (式1.7.1) 它认为引起材料断裂破坏的主要因素是最大拉应力。亦即不论材料处于何种应力状态,只要最大拉应力达到材料单向拉伸断裂时的最大应力值,材料即发生断裂破坏。 1.7.2 第二强度理论-最大伸长线应变理论,其当量应力为 S=?1-?(?2+?3) ( 式1.7.2) 它认为引起材料断裂破坏的主要因素是最大伸长线应变。亦即不论材料处于何种应力状态,只要最大伸长线应变达到材料单向拉伸断裂时的最大应变值,材料即发生断裂破坏。 1.7.3 第三强度理论-最大剪应力理论,其当量应力为 S=?1-?3 (式1.7.3) 它认为引起材料破坏或失效的主要因素是最大剪应力。亦即不论材料处于何种应力状态,只要最大剪应力达到材料屈服极限值,材料即发生屈服破坏。 1.7.4 第四强度理论-变形能理论,其当量应力为 S=12??1??2?2???2??3?2???3??1?2 ( 式1.7.4) 它认为引起材料屈服破坏的主要因素是材料内的变形能。亦即不论材料处于何种应力状态,只要其内部积累的变形能达到材料单向拉伸屈服时的变形能值,材料即发生屈服破坏。 在管道强度设计中,主要采用最大剪应力强度理论。 1.8 蠕变与应力松弛 蠕变和应力松弛是金属材料在高温下的机械性能。 1.8.1 蠕变是指金属在高温和应力同时作用下,应力保持不变,其非弹性变形随时间的延长而缓慢增加的现象。高温、应力和时间是蠕变 6 管道应力分析和计算 发生的三要素。应力越大、温度越高,且在高温下停留的时间越长,则蠕变越甚。 1.8.2 应力松弛是指高温下工作的金属构件,在总变形量不变的条件下,其弹性变形随着时间的延长不断转变成非弹性变形,从而引起金属中应力逐步下降并趋于一个稳定值的现象。 1.8.3 蠕变和应力松弛两种现象的实质是相同时,都是高温下随时间发生的非弹性变形的积累过程。所不同的是应力松弛是在总变形量一定的特定条件下一部分弹性变形转化为非弹性变形;而蠕变则是在恒定应力长期作用下直接产生非弹性变形。 1.9 应力分类 对于管道上的应力,一般分为一次应力、二次应力和峰值应力三类。 1.9.1 一次应力 一次应力是由压力、重力与其他外力荷载的作用所产生的应力。它是平衡外力荷载所需的应力,随外力荷载的增加而增加。一次应力的特点是没有自限性,即当管道内的塑性区域扩展达到极限状态,使之变成几何可变的机构时,即使外力荷载不再增加,管道仍将产生不可限制的塑性流动,直至破坏。 一次应力有三种类型:一次一般薄膜应力、一次局部薄膜应力和一次弯曲应力。 (1)一次一般薄膜应力,是在所研究的截面厚度上均匀分布的,且等于该截面应力平均值的法向应力(即正应力)的分量。如果这种应力达到屈服极限时,将引起截面整体屈服,不出现荷载的再分配。 (2)一次局部薄膜应力,是由内压或其它机械荷载产生的,由于结构不连续或其它特殊情况的影响,而在管道或附件的局部区域有所增强的一次薄膜应力。这类应力虽然具有二次应力的一些特征,但 7 管道应力分析和计算 为安全计,通常划为一次应力。 (3)一次弯曲应力,是在所研究的截面上法向应力(即正应力)从平均值算起的沿厚度方向变化的分量。这种应力达到屈服极限时,也只引起局部屈服。在应力验算中,通常不单独评价一次弯曲应力强度。 1.9.2 二次应力 二次应力是由管道变形受约束而产生的应力,它由管道热胀、冷缩、端点位移等位移荷载的作用而引起。它不直接与外力平衡,而是为满足位移约束条件或管道自身变形的连续要求所必需的应力。二次应力的特点是具有自限性,即局部屈服或小量变形就可以使位移约束条件或自身变形连续要求得到满足,从而变形不再继续增大。二次应力引起的是疲劳破坏。 二次应力也有二次薄膜应力和二次弯曲应力两部分。 1.9.3 峰值应力 峰值应力是管道或附件由于局部结构不连续或局部热应力效应(包括局部应力集中)附加到一次应力或二次应力的增量。它的特点是不引起显著的变形,而且在短距离内从它的根源衰减,它是一种导致疲劳裂纹或脆弱破坏的可能原因。例如,管道由于温度分布不均匀,不同膨胀几乎全部被限制,不引起显著变形的局部热应力,以及管道附件上小半径圆角处,焊缝未焊透处的应力,均属于峰值应力。 1.10 应力分析 应力分析是研究应力和应变的理论。大多数应力分析,都是以结构的弹性理论为基础的,同时对塑性理论的应用给予充分的重视。采用比较广泛的应力分析有下面几种。 1.10.1 弹性分析 8 管道应力分析和计算 采用最早的应力分析是弹性分析。它通常是在不发生屈服的条件下,利用应力与应变间的线性关系(即虎克定律),计算由荷载引起的应力变化和挠度变化。按照弹性分析,应力是限定在材料的屈服极限以内,并留有适当的裕度。 1.10.2 极限分析 极限分析是涉及由于材料屈服而使结构发生塑性流动并达到全塑性状态时的荷载(或压力)的计算,是一个防止过度变形的准则。 根据一次应力没有自限性的特征,它超过一定的限度,将使管道变形增加直至破坏。因此,必须防止过度的塑性变形,并为爆破压力和蠕变失效留有足够的裕度。对一次应力的限定,采用极限分析。 1.10.3 安定分析 安定性是指不发生塑性变形的连续循环,如果在少数反复加载之后,变形稳定下来,并且随后的结构,除蠕变效应以外,表现是弹性的,或者可以说,管道在有限量塑性变形之后,能安定在弹性状态。安定分析限制的最大应力范围不超过两倍屈服极限。 安定分析适用于高应变低循环疲劳。为防止交替塑性或增量破坏,对管道的一次应力加二次应力的验算,采用安定分析。 1.10.4 疲劳分析 在周期性或交变荷载作用下,管道将产生交变应力(或应变),并且将引起材料疲劳破坏。 管道在使用期间内,要经历冷、热交变的循环,交变次数不象转动机械设备那样高,管道的疲劳属于高应变低循环疲劳。 疲劳分析主要是估计峰值应力的影响,限制累积疲劳损伤,确定使用的应力范围和交变疲劳次数。管道热胀应力主要是弯曲力矩所产生的应力,因此,在验算一定交变次数下的许用应力范围时,采取了 9