2014中考数学知识突破__四:探究型问题 联系客服

发布时间 : 星期三 文章2014中考数学知识突破__四:探究型问题更新完毕开始阅读c2112101a9956bec0975f46527d3240c8547a17d

20=9;方程④根:x1=4,x2=5. xn(n?1)(3)第n个方程:x+=2n+1. x(2)方程④:x+此方程解:x1=n,x2=n+1. 点评:本题考查了分式方程的解,从题目中找出规律是解题的关键. 对应训练 3.(2013?南沙区一模)如图,一个动点P在平面直角坐标系中按箭头所示方向作折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是 . 3.(2013,1)

考点四:存在探索型:

此类问题在一定的条件下,需探究发现某种数学关系是否存在的题目. 例4 (2013?呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F, (1) FC的值为 ; EF(2)求证:AE=EP; (3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由. 思路分析:(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答; (2)在BA边上截取BK=NE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出; (3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出. 解:(1)∵四边形ABCD是正方形,

∴∠B=∠D, ∵∠AEP=90°, ∴∠BAE=∠FEC, 在Rt△ABE中,AE=32?12?10, ∵sin∠BAE=BEFC=sin∠FEC=, AEEC∴FC10=, EC10 (2)证明:在BA边上截取BK=NE,连接KE, ∵∠B=90°,BK=BE, ∴∠BKE=45°, ∴∠AKE=135°, ∵CP平分外角, ∴∠DCP=45°, ∴∠ECP=135°, ∴∠AKE=∠ECP, ∵AB=CB,BK=BE, ∴AB-BK=BC-BE, 即:AK=EC, 易得∠KAE=∠CEP, ∵在△AKE和△ECP中, ??KAE??CEP?, ?AK?EC??AKE??ECP?∴△AKE≌△ECP(ASA), ∴AE=EP; (3)答:存在. 证明:作DM⊥AE于AB交于点M, 则有:DM∥EP,连接ME、DP, ∵在△ADM与△BAE中,

?AD?AD???ADM??BAE, ??BAD??ABE?∴△ADM≌△BAE(AAS), ∴MD=AE, ∵AE=EP, ∴MD=EP,

∴MD∥EP,MD=EP,

∴四边形DMEP为平行四边形. 点评:此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.

对应训练 4.(2013?陕西)问题探究:

(1)请在图①中作出两条直线,使它们将圆面四等分;

(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由. 问题解决: (3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

4.解:(1)如图1所示,

(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,

则直线EF、OM将正方形的面积四等份,

理由是:∵点O是正方形ABCD的对称中心, ∴AP=CQ,EB=DF,

在△AOP和△EOB中 ∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE, ∴∠AOP=∠BOE, ∵OA=OB,∠OAP=∠EBO=45°, ∴△AOP≌△EOB, ∴AP=BE=DF=CQ, 设O到正方形ABCD一边的距离是d, 则1111(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d, 2222∴S四边形AEOP=S四边形BEOC=S四边形CQOF=S四边形DPFM, 直线EF、OM将正方形ABCD面积四等份; (3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份, 理由是:如图③,连接BP并延长交CD的延长线于点E, ∵AB∥CD, ∴∠A=∠EDP, ∵在△ABP和△DEP中 ??A??EDP?, ?AP?DP??APB??DPE?∴△ABP≌△DEP(ASA), ∴BP=EP, 连接CP, ∵△BPC的边BP和△EPC的边EP上的高相等, 又∵BP=EP, ∴S△BPC=S△EPC, 作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE, 由三角形面积公式得:PF=PG, 在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP ∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP 即:S四边形ABQP=S四边形CDPQ, ∵BC=AB+CD=a+b, ∴BQ=b, ∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分. 四、中考真题演练 一、选择题 1.(2013?永州)如图,下列条件中能判定直线l1∥l2的是( ) A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180° D.∠3=∠5