遗传与进化 联系客服

发布时间 : 星期日 文章遗传与进化更新完毕开始阅读b00dad5d26284b73f242336c1eb91a37f1113214

十四 遗传与进化

一、竞赛中涉及的问题

在中学生物学教学大纲中已经详细介绍了遗传的分子基础,孟德尔遗传规律。简要介绍了生物的变异、生命的起源及达尔文的生物进化论等内容。根据国际生物学奥林匹克竞赛纲要和全国中学生生物学竞赛大纲(试行)的要求,竞赛中要用到的有关遗传与进化的知识作适当扩展,并加以说明。

(一)DNA的复制

1.DNA半保留复制的证实

DNA半保留复制在1953年由沃森和克里克提出,1958年又由梅塞尔森和斯塔尔设计的新实验方法予以证实。

梅塞尔森和斯塔尔将大肠杆菌置于含有同位素重氮(15 N)的培养基中生长。15N比14N多一个中子,质量稍重。大肠杆菌繁殖若干代,其DNA中所含的氮均为15N。将这些菌移入14N的培养基中繁殖,经过一次、二次、四次等细胞分裂,抽取细菌试样,用氯化铯(CsCl)密度一梯度离心方法测定不同密度中DNA的含量。

氯化铯密度一梯度离心是一种离心新技术,可以将质量差异微小的分子分开。用氯化铯浓盐液,以105g以上的强大离心力的作用,盐的分子被甩到离心管的底部。同时,

+-

扩散作用使溶液中Cs和Cl离子呈分散状态,与离心力的方向相反,经过长时间的离心,溶液达到一种平衡状态。反向扩散力与沉降力之间的平衡作用,产生了一个连续的CsCl浓度梯度。离心管底部溶液的密度最大,上部最小。DNA分子溶于CsCl溶液中,经过离心,将逐渐集中在一条狭窄的带上。带上的DNA分子密度与该处CsCl相等。

如果取在含有15N的培养基中培养的大肠杆菌在CsCl溶液中离心,在离心管中形成的带,位置较低,称为重带;如果取在含有14N的培养基中培养的大肠杆菌在 CsCl溶液中离心,在离心管中形成的带,位置较高,称为轻带;如果将含有15N的大肠杆菌在14N的培养基中培养一代,取样离心,在离心管中形成的带,正好在重带和轻带的中间。如果DNA复制是半保留的,这恰是实验所预期的,因为含有15N的大肠杆菌在14N的培养基中繁殖一代,这样,大肠杆菌的DNA中一条键是含有15N的重链,另一条是含有14N的轻链。

如果将15N/14N的 DNA杂合分子缓慢加热(热变性),使其双链分开,再放在CsCl溶液中离心。结果发现离心管中出现高低两条带,一条重带、一条轻带。这更证实,DNA复制是半保留复制。

2.DNA半保留复制过程 作为主要遗传物质的DNA,必须具有自我复制的能力,产生与它完全相同的新DNA分子,这样才能使遗传信息准确无误地传递给下一代,保证遗传上的连续性和相对稳定性。沃森等根据DNA分子的双螺旋结构模型,认为DNA分子是以半保留方式进行自我复制的。他们认为,DNA双螺旋结构中每一个半分子链与另一个半分子链的碱基互补,实际上是构成了一副模板,当DNA复制时,在解旋酶的作用下,首先是从它的一端沿着氢键逐渐断裂,使双螺旋解开,形成复制分叉,使两条单链各自露出碱基,而另一端仍保持双链状态(见下图)。互补的游离脱氧核苷酸,即一个腺嘌呤(A)吸引一个含有胸腺嘧啶(T)的脱氧核苷酸(或T吸引A),一个胞嘧啶(C)吸引一个含有鸟嘌

第 1 页 共 72 页

呤(G)的脱氧核苷酸(或G吸引C),如此等等。随即进行氢键的结合,在复杂的酶系统(如聚合酶Ⅰ、Ⅱ、Ⅲ和连接酶等)的作用下,各自形成一条新的完整的互补链,与原来的模板单链相互盘旋在一起,恢复了DNA双链结构。这样,随着DNA分子双螺旋的完全拆开,就逐渐形成了两个新的DNA分子,与原来的完全一样(见下图)。从模式图可见,通过复制所形成的两个新DNA分子,都保留有原来亲本DNA双链分子的一条单链,所以DNA这种自我复制方式称为半保留复制。

对DNA复制的进一步研究,相继发现了复制过程中的一些细节:

(1)发现DNA聚合酶只能从5’到3’的方向把相邻的核苷酸连在一起,因而有人提出,DNA在复制过程中,一条从5’到3’方向的互补新链是按照沃森等的假说连续合成的,但另一条从3’到5’方向的互补新链,则先按5’到3’方向一段一段地合成DNA单链小片段,即“冈崎片段”(1000~2000个核苷酸长),这些不连续的小片段再由连接酶连接起来,成为一条连续的单链;可见,这条由3’到5’方向的互补新链是倒退着合成的。

(2)冈崎等(1968)进一步证明,从5’到3’方向的互补新链,也是通过冈崎片段一段一段连接而成的(如下图所示)。(这种讲法有问题,)

第 2 页 共 72 页

冈崎等关于DNA复制的假说

(3)冈崎等(1973)又发现在合成DNA单链片段以前,先由一种特殊类型的酶以DNA为模板,合成一小段约含几十个核苷酸的RNA,然后DNA聚合酶才开始起作用,连接着RNA3’端并按5’到3’的方向合成DNA单链片段。这段RNA实际上起到了“引物”的作用,所以称为引物RNA,随后由DNA聚合酶Ⅰ除去引物RNA,并在原位上补上DNA单链片段(见下图)。

DNA复制过程中的RNA引物

~~表示RNA;——表示DNA

DNA在活体内的半保留复制性质已为1958年以来的大量试验所证实。 3.RNA的复制

大多数RNA病毒是单链的。这种RNA的复制一般是先以自己为模板合成一条与其碱基互补配对的单链,通常称这条起模板作用的RNA分子链为“+”链,而将新复制的RNA分子链称为“-”链,这样就形成了双螺旋的复制类型。然后这条“-”链又从“+”链模板中释放出来,它也以自己为模板复制出一条与自己互补的“+”链,于是形成了一条新生的病毒RNA(如下图所示)。

第 3 页 共 72 页

单链噬菌体RNA复制示意图 A.以单链RNA+链为模板进行复制

B.形成复制类型

C.以一链为模板形成几个新的+链

(二)染色体的畸变 1.染色体结构的改变

因为一个染色体上排列着较多基因,所以不仅染色体数目的变异可以引起遗传信息的改变,而且染色体结构的变化,也可引起遗传信息的改变。

一般认为,染色体的结构变异起因于染色体或它的亚单位——染色单体的断裂。每一断裂产生两个断裂端,这些断裂端可以沿着下面三条途径中的一条发展:

(1)它们保持原状,不愈合,没有着丝粒的染色体片段最后丢失。

(2)同一断裂的两个断裂端重新愈合或重建,回复到原来的染色体结构。

(3)某一断裂的一个或两个断裂端,可以跟另一断裂所产生的断裂端连接,引起非重建性愈合。

第 4 页 共 72 页