基于单片机的温度巡检系统的设计 联系客服

发布时间 : 星期一 文章基于单片机的温度巡检系统的设计更新完毕开始阅读ab9e01fc941ea76e58fa046e

口,而不能象P1、P3直接用作输出口。它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。

P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为216=64k,所以8051最大可外接64kB的程序存储器和数据存储器。 P1口:

P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至\,此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。需要说明的是,作为输入口使用时,有两种情况,其一是:首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。其二是:读P1口线状态时,打开三态门G2,将外部状态读入CPU。 b Mcs-51的串行通信口

8051单片机引脚图

17

MCS-51单片机内部有一个全双工的串行通信口,即串行接收和发送缓冲器(SBUF),这两个在物理上独立的接收发送器,既可以接收数据也可以发送数据。但接收缓冲器只能读出不能写入,而发送缓冲器则只能写入不能读出,它们的地址为99H。这个通信口既可以用于网络通信,亦可实现串行异步通信,还可以构成同步移位寄存器使用。如果在传行口的输入输出引脚上加上电平转换器,就可方便地构成标准的RS-232接口[13]。下面我们分别介绍。 ① 基本概念

数据通信的传输方式有单工,半双工,全双工和多工方式。

单工方式:数据仅按一个固定方向传送。因而这种传输方式的用途有限,常用于串行口的打印数据传输与简单系统间的数据采集。

半双工方式:数据可实现双向传送,但不能同时进行,实际的应用采用某种协议实现收/发开关转换。

全双工方式:允许双方同时进行数据双向传送,但一般全双工传输方式的线路和设备较复杂。

多工方式:以上三种传输方式都是用同一线路传输一种频率信号,为了充分地利用线路资源,可通过使用多路复用器或多路集线器,采用频分,时分或码分复用技术,即可实现在同一线路上资源共享功能,我们盛之为多工传输方式。

串行数据通信两种形式。 异步通信

在这种通信方式中,接收器和发送器有各自的时钟,它们的工作是非同步的,异步通信用一帧来表示一个字符,其内容如下:一个起始位,仅接着是若干个数据位。

同步通信

同步通信格式中,发送器和接收器由同一个时钟源控制,为了克服在异步通信中,每传输一帧字符都必须加上起始位和停止位,占用了传输时间,在要求传送数据量较大的场合,速度就慢得多。同步传输方式去掉了这些起始位和停止位,只在传输数据块时先送出一个同步头(字符)标志即可[14]。 同步传输方式比异步传输方式速度快,这是它的优势。但同步传输方式也有其缺点,即它必须要用一个时钟来协调收发器的工作,所以它的设备也较复杂。 串行数据通信的传输速率。

串行数据传输速率有两个概念,即每秒转送的位数bps(Bit per second)和每秒符号数—波特率(Band rate),在具有调制解调器的通信中,波特率与调制速率有关。 ② MCS-51的串行口和控制寄存器

串行口控制寄存器

MCS-51单片机串行口寄存器结构如图3.6所示。SBUF为串行口的收发缓冲器,它是一个可寻址的专用寄存器,其中包含了接收器和发送器寄存器,可以实现全双工通信。但这两个寄存器具有同一地址(99H)。MCS-51的串行数据传输很简单,只要向发送缓冲器写入数据即可发送数据。而从接收缓冲器读出数据即可接收数据

18

[15]

。此外,接收缓冲器前还加上一

级输入移位寄存器,MCS-51这种结构目的在于接收数据时避免发生数据帧重叠现象,以免出错,部分文献称这种结构为双缓冲器结构。而发送数据时就不需要这样设置,因为发送时,CPU是主动的,不可能出现这种现象。

图3.6 Mcs-51串行口寄存器结构

串行通信控制寄存器

SCON控制寄存器是一个可寻址的专用寄存器,用于串行数据的通信控制,单元地址是98H,其结构格式如表3.1:

表3.1 SCON寄存器结构

D7 SCON SM0 位地址

下面我们对各控制位功能介绍如下: a SM0、SM1:串行口工作方式控制位。 SM0,SM1 工作方式 00 01 10

方式0 方式1 方式2

9FH SM1 9EH SM2 8DH REN 9CH TB8 9BH RB8 9AH TI 99H RI 98H D6 D5 D4 D3 D2 D1 D0 11 方式3

b SM2:多机通信控制位。

多机通信是工作于方式2和方式3,SM2位主要用于方式2和方式3。接收状态,当串行口工作于方式2或3,以及SM2=1时,只有当接收到第9位数据(RB8)为1时,才把接收到的前8位数据送入SBUF,且置位RI发出中断申请,否则会将接受到的数据放弃[16]。当SM2=0时,就不管第位数据是0还是1,都难得数据送入SBUF,并发出中断申请。工作于方式0时,SM2必须为0。 c REN:允许接收位。

REN用于控制数据接收的允许和禁止,REN=1时,允许接收,REN=0时,禁止接收。 d TB8:发送接收数据位8。

19

在方式2和方式3中,TB8是要发送的——即第9位数据位。在多机通信中同样亦要传输这一位,并且它代表传输的地址还是数据,TB8=0为数据,TB8=1时为地址。 e RB8:接收数据位8。

在方式2和方式3中,RB8存放接收到的第9位数据,用以识别接收到的数据特征。 f TI:发送中断标志位。

可寻址标志位。方式0时,发送完第8位数据后,由硬件置位,其它方式下,在发送或停止位之前由硬件置位,因此,TI=1表示帧发送结束,TI可由软件清“0”。 g RI:接收中断标志位。

可寻址标志位。接收完第8位数据后,该位由硬件置位,在其他工作方式下,该位由硬件置位,RI=1表示帧接收完成。 电源管理寄存器PCON

PCON主要是为CHMOS型单片机的电源控制而设置的专用寄存器,单元地址是87H,其结构格式如表3.2:

表3.2 PCON电源管理寄存器结构

PCON 位符号

在CHMOS型单片机中,除SMOD位外,其他位均为虚设的,SMOD是串行口波特率倍增位,当SMOD=1时,串行口波特率加倍。系统复位默认为SMOD=0。 中断允许寄存器IE[17]。

ES为串行中断允许控制位,ES=1允许串行中断,ES=0,禁止串行中断。

表3.3 IE中断允许控制寄存器结构

位符号 位地址

3.3.2声光报警部分

温度检测系统多有声光报警功能,当检测温度超过上下限时,进行声光提示。本系统在从机和主机部分均设计了报警电路。各从机的报警上下限由主机预置,从机实时监测的过程中,一旦发现检测温度值连续超出阈值范围,便启动自身报警电路,同时向主控机发送报警信号[18]。报警电路原理如下所示:

20

D7 SMOD D6 - D5 - D4 - D3 GF1 D2 GF0 D1 PD D0 IDL EA AFH - AEH - ADH ES ACH ET1 ABH EX1 AAH ET0 A9H EX0 A8H