2017涓冩暟瀛﹁瘯棰樻眹缂栦簩娆″嚱鏁?- 鐧惧害鏂囧簱 联系客服

发布时间 : 星期四 文章2017涓冩暟瀛﹁瘯棰樻眹缂栦簩娆″嚱鏁?- 鐧惧害鏂囧簱更新完毕开始阅读a4a8bf543069a45177232f60ddccda38366be126

y=﹣x2+x+4, ∴b=,c=4.

(2)在点P、Q运动过程中,△APQ不可能是直角三角形. 理由如下:连结QC.

∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角, ∴当△APQ是直角三角形时,则∠APQ=90°. 将x=0代入抛物线的解析式得:y=4, ∴C(0,4). ∵AP=OQ=t, ∴PC=5﹣t,

∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,

∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5. ∵由题意可知:0≤t≤4,

∴t=4.5不合题意,即△APQ不可能是直角三角形. (3)如图所示:

9

过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°. ∵PG∥y轴, ∴△PAG∽△ACO, ∴

=

=

,即

=

=,

∴PG=t,AG=t,

∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t. ∵∠MPQ=90°,∠D=90°,

∴∠DMP+∠DPM=∠EPQ+∠DPM=90°, ∴∠DMP=∠EPQ. 又∵∠D=∠E,PM=PQ, ∴△MDP≌PEQ,

∴PD=EQ=t,MD=PE=3+t,

∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t, ∴M(﹣3﹣t,﹣3+t). ∵点M在x轴下方的抛物线上,

∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=∵0≤t≤4, ∴t=

(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.

10

∵点H为PQ的中点,点R为OP的中点, ∴RH=QO=t,RH∥OQ. ∵A(﹣3,0),N(﹣,0), ∴点N为OA的中点. 又∵R为OP的中点, ∴NR=AP=t, ∴RH=NR, ∴∠RNH=∠RHN. ∵RH∥OQ, ∴∠RHN=∠HNO,

∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.

设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:解得:m=,n=4,

∴直线AC的表示为y=x+4.

同理可得直线BC的表达式为y=﹣x+4.

设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(﹣)+s=0,解得:s=2,

∴直线NR的表述表达式为y=x+2. 将直线NR和直线BC的表达式联立得:

,解得:x=,y=

11

∴Q′(,).

【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、相似三角形的性质和判定、全等三角形的性质和判定,依据勾股定理列出关于t的方程是解答问题(2)的关键;求得点M的坐标(用含t的式子表示)是解答问题(3)的关键;证得NH为∠QHQ′的平分线是解答问题(4)的关键.

(2017山东) 25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣

x2﹣

x+8

与x轴正半轴交于点A,与y轴交于点B,连接AB,点

M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G. (1)填空:OA的长是 8 ,∠ABO的度数是 30 度; (2)如图2,当DE∥AB,连接HN. ①求证:四边形AMHN是平行四边形;

②判断点D是否在该抛物线的对称轴上,并说明理由;

(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.

【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;

(2)①根据三角形的中位线定理证明HN∥AM,由两组对边分别平行的四边形

12