Ultra-short pulse laser ablation of copper 联系客服

发布时间 : 星期二 文章Ultra-short pulse laser ablation of copper更新完毕开始阅读9a3bb4b3a5e9856a5612609c

Ultra-shortpulselaserablationofcopper,silverandtungsten:experimentaldataandtwo-temperature451

Fig.3(a)Thecalculatedthreshold?uenceforcopperversusthelaserpulseduration(bluecircles).(b)Thecalculatedmeltingdepthatthethreshold?uenceversusthelaserpulseduration(blacksquares).Threeregimesareseen:aconstantvaluebelow1ps,atransitionregion,andthenapowerlawatlongerpulsedurations.Thereddashedlineisa?ttothedatapointsbelow1ps,andthegreendash-dottedlinea?ttothedata≥40ps.Theblacksolidlinein(a)representsananalyticalexpressiongivenby(9)

3.2Pulse-durationdependenceofthemeltingdepthThemeltingdepthisde?nedasthemaximumdepthatwhichthecombinedenergyintheelectronandlatticesystemsex-ceedstheenergyneededforthematerialtoundergoheatingandmelting.Formally,itcanbewrittenas

??

Cl,maxlTl,max+

TC(T??)dT??

Te0

≥??Hm+Cl(Tm?T0),

(10)

where??Hmistheenthalpyofmelting,Tmisthemeltingtemperature.

AscanbeseenfromFig.3(b),themeltingdepthatthethreshold?uenceincreasesdramaticallyaslongerpulsesareapplied.Thesamethreeregionsasbeforeareseen.Weobserveameltingdepthindependentofpulsedurationforpulsesshorterthan1ps(reddashedlineinFig.3(b)),thenatransitionregionand?nallyanincreaseproportionaltoτ0.51forpulseslongerthan~40ps(greendash-dottedline

inFig.3(b)).Againa√

τdependencecanbederivedfromapproximatecalculations,see,e.g.,[3]and[20].Themelt-ingdepthisseentoincreasefrom32nmat100fstomorethan1μmat20nspulseduration.

Alasersystemforanapplicationrequiringaspeci?cpre-cisioncanthusbefoundfromFig.3(b).Ifitisdesiredtohavesmallheataffectedregions,e.g.,inordertomaintainthenativestrengthofagivenmaterial,itisseeminglynec-essarytoemployultra-shortlaserpulses.

4Comparisonwithdata

Theexperimentalapproachisdescribedindetailin[16].ThelaserisaTi:Sapphire-basedchirped-pulse-ampli?cation(CPA)system.Thepulsedurationisapproximately100fs,thecentralwavelengthis800nmandthepulseenergiesintherangefrom9to185μJ.Anf=45mmachromaticlensisusedtofocusthelaserontothesampleswhicharepo-sitioned500μmbehindthefocustogeta1/espotsizeofapproximately40μm.Withthisspotsizetheassumptionofa1Dmodelasdiscussedaboveisvalid.Thedesirednumberofpulsesisselectedbymeansofamechanicalshutter.Ahe-liumpurgeenclosesthefocalregiontominimizenonlineareffectsandavoidopticalbreakdown[4].

Thedepthsoftheholesarefoundusinganopticalmicro-scope,seedetailsin[16].Plottingtheablationdepthversustheappliednumberofpulses,theablationratecanbefoundfromtheslopeofthecurve.Whenmorethanapproximately100pulsesareapplied,theablationrateisobservedtode-crease,soonlyfew-shotablationisemployed.Thismethodof?ndingtheablationdepthmeans,however,thattheab-sorptanceofthesampleplaysacrucialrole.Inmulti-shotablation,theabsorptancerapidlyincreasesasmorepulsesareapplied,soweneedtointroduceanaverageabsorptancetomatchthemulti-shotexperimentaldatatothesingle-shottheoreticalsimulation.

ThevaluesappliedtomatchthedataareACumulti=0.32,AAg

multi=0.26andAWmulti=0.80.Notethattheabsorptanceistheonlyadjustableparameter,andusingthesevalues,goodagreementwiththedataisobtainedovertheentire?uencerange,seeFig.2.Theabsorptancevaluesmayincludepos-siblechangesinre?ectivityduringthelaserpulse,whichisclaimedtobesigni?cantin[21],whileotherinvestiga-tionsindicatethatattheintensitylevelsofthepresentstudy,changestotheopticalpropertiesarenegligible[11,22,23].

452Fig.4ThegreenlinerepresentstheTTMsimulationofsilverwiththeinclusionofballisticelectrons.Muchbetteragreementwiththedata,particularlyinthelow?uenceregime,isobserved.LegendasinFig.2

Theroleofballisticelectronsforheattransporthasbeendiscussedintheliterature,see,e.g.,[24–26].Thetreatmentofballisticelectronsrequiresinprincipleadescriptionofnon-equilibriumelectrondistributions.Thiscannotbedoneintheframeworkofthecurrentinvestigation.Instead,weusethesimpleapproximationthattheballisticelectronsmerelycontributetotheheat-penetrationlength.ThelasersourcetermthenbecomesQ=

AI(t)e?2r

2/ω2

e?z/(α1

+λball)

1α+λ,(11)

ball

whereλballisballisticelectronpenetrationdepth.Itisseenthatinthisdescriptiononlythedepositiondepthoftheen-ergyischanged.However,thiscanalsodrasticallychangethethreshold?uence.Figure4showstheeffectofincorpo-ratingballisticelectronsintothemodel.

Sinceenergyiscarriedintothedeeperpartsofthemate-rial,thethreshold?uenceissigni?cantlyhigherastheen-ergydensityatthesurfaceisdecreased.Itisseenthatthereisamuchbetteragreementwiththedata,particularlyinthelow?uenceregime,whenballisticelectronsareincluded.Itis,however,onlyofminorimportancefortransitionmetalsascanalsobeseeninthecaseoftungsteninFig.2.

Thevalueoftheballisticelectronpenetrationdepthisestimatedasfollows:Theeffectivepenetrationdepthcanbefoundfromtheexperimentaldatabymakinga?tofthelow-?uencedatapointstotheequationL??=??·lnF

istheeffectivepenetrationdepth.ThesimulatedFth

,where??penetrationdepthintheabsenceofballisticelectronsisfoundby?ttingthesimulateddepthstothesameequation.Theballisticelec-tronpenetrationdepthcanthenbefoundasthedifference,i.e.,λball=??exp???sim.

We?ndλCu=15±4nm,λAg

ball=53±7nm,andnosignatureofball

ballisticelectronsfortungsten.Thesevalues

J.Byskov-Nielsenetal.

shouldbecomparedtotheopticalpenetrationdepthsof13,12and23nmforcopper,silverandtungsten,respec-tively.Weemphasizethatthesevaluesoftheballisticelec-tronrangeinthenoblemetalsmustbeincorporatedinade-scriptionapplyingtheTTMbeforeanaccuratepredictionoftheablationratescanbemade.Notethatreproductionoftheexperimentaldatacannotbeachievedbysimplyadjust-ingtheabsorptance;thiswillonlyshiftthecalculatedcurvealongthe?uenceaxis,butnotchangeitsshape.

Therangeoftheballisticelectronsdependsonthespe-ci?cbandstructureofthematerials.Itsorderofmagnitudecanbefoundfromtheelectronmean-freepaths,??mfp=vF·τr,wherevFistheFermivelocityandτristheDruderelax-ationtime.Themean-freepathisestimatedfromtabulatedvaluesin[27],assumingthattheelectronstravelthroughasamplewhichisessentiallyatmatesare??Cunmand??Ag

roomtemperature.Theesti-mfp=42agreementwithmfp=56nm,whichisseentobeinreasonableourvalues.

Thesevaluesaresomewhatsmallerthantheelectronmean-freepathreportedin[25],wherevaluesof70nmand142nmforcopperandsilverarefound.However,thespe-ci?ccharacteristicsofthesamplemayin?uencethisrange.Forinstance,thethicknessandparticularlythecrystallinityofthesampleareimportant.Themean-freepathisex-pectedtobemuchlongerinsingle-crystallinesamplesthaninamorphousmaterial.

5Conclusions

Experimentallymeasuredablationratesasafunctionof?u-enceforthreedifferentmetalsarecomparedtocomputersimulationsbasedonthetwo-temperaturemodel.Whenin-corporatingballisticelectronsintothemodel,we?ndverygoodagreementbetweenexperimentandsimulation.Bothdataandsimulationsseemtobeconsistentwithalinearde-pendenceathigh?uence.

Fromthesimulations,wealsoshowthatthethreshold?u-enceandmeltingdepthareconstantforpulsesshorterthan1psandincreaseasτ0.47andτ0.51,respectively,forpulseslongerthanapproximately40ps.Thelong-pulsebehaviorisingoodagreementyieldinga√

withapproximateanalyticalcalculations

τdependence.

References

1.P.B.Corkum,F.Brundel,N.K.Sherman,T.Srinivasanrao,Phys.Rev.Lett.61,2886(1988)

2.S.Reuss,A.Demchuk,M.Stuke,Appl.Phys.A61,33(1995)3.D.B?uerle,LaserProcessingandChemistry,3rdedn.(Springer,Berlin,2000)

4.P.Balling,inLaserCleaningII,ed.byD.M.Kane(Singapore,WorldScienti?c,2006)

Ultra-shortpulselaserablationofcopper,silverandtungsten:experimentaldataandtwo-temperature453

5.L.V.Zhigilei,Z.Lin,D.S.Ivanov,J.Phys.Chem.C113,11892(2009)

6.S.I.Anisimov,B.L.Kapeliovich,T.L.Perel’man,Sov.Phys.JETP39,375(1974)

7.K.Vestentoft,P.Balling,Appl.Phys.A84,207(2006)

8.B.H.Christensen,K.Vestentoft,P.Balling,Appl.Surf.Sci.253,6347(2007)

9.J.K.Chen,J.E.Beraun,J.Opt.A,PureAppl.Opt.5,168(2003)10.J.Yang,Y.Zhao,X.Zhu,Appl.Phys.A89,571(2007)

11.R.Fang,D.Zhang,H.Wei,Z.Li,F.Yang,Y.Gao,LaserPart.

Beams28,157(2010)

12.Z.Lin,L.V.Zhigilei,V.Celli,Phys.Rev.B77,075133(2008)13.V.Schmidt,W.Husinsky,G.Betz,Appl.Surf.Sci.197–198,145

(2002)

14.H.Rogier,M.Groeneveld,R.Sprik,A.Lagendijk,Phys.Rev.B

51,11433(1995)

15.W.S.Fann,R.Storz,H.W.K.Tom,J.Bokor,Phys.Rev.Lett.68,

2834(1992)

16.J.Byskov-Nielsen,J.-M.Savolainen,M.S.Christensen,P.Balling,

Appl.Phys.A101,97(2010)

17.R.L.Harzic,D.Breitling,M.Weikert,S.Sommer,C.F?hl,S.

Valette,C.Donnet,E.Audouard,F.Dausinger,Appl.Surf.Sci.249,322(2005)

18.M.Hashida,A.F.Semerok,O.Gobert,G.Petite,Y.Izawa,J.F.

Wagner,Appl.Surf.Sci.197–198,862(2002)

19.G.A.Mourou,D.Du,S.K.Dutta,V.Elner,R.Kurtz,P.R.Lichter,

X.Liu,USPatent,5,656,186(1997)

20.B.N.Chichkov,C.Momma,S.Nolte,F.vonAlvensleben,A.Tün-nermann,Appl.Phys.A63,109(1996)

21.S.E.Kirkwood,Y.Y.Tsui,R.Fedosejevs,A.V.Brantov,V.Y.By-chenkov,Phys.Rev.B79,144120(2009)

22.P.S.Banks,M.D.Feit,A.M.Komashko,M.D.Perry,A.M.

Rubenchik,B.C.Stuart,inHigh-PowerLaserAblationIIIed.byC.Phippsetal.,vol.4065(SPIE,Bellingham,2000),p.147.doi:10.1117/12.407345

23.D.Fisher,M.Fraenkel,Z.Zinamon,Z.Henis,E.Moshe,Y.

Horovitz,E.Luzon,S.Maman,S.Eliezer,LaserPart.Beams23,391(2005)

24.S.-S.Wellershoff,J.Hohlfeld,J.Güdde,E.Matthias,Appl.Phys.

A69,99(1999)

25.J.Hohlfeld,S.-S.Wellershoff,J.Güdde,U.Conrad,V.J?hnke,E.

Matthias,Chem.Phys.251,237(2000)

26.D.A.Thomas,Z.Lin,L.V.Zhigilei,E.L.Gurevich,S.Kittel,R.

Hergenr?der,Appl.Surf.Sci.255,9605(2009)

27.N.W.Ashcroft,N.D.Mermin,SolidStatePhysics(Brooks-Cole,

Belmont,1976)