机车车辆传动与控制 联系客服

发布时间 : 星期日 文章机车车辆传动与控制更新完毕开始阅读6ab5735eff4733687e21af45b307e87101f6f8ed

(2)弱磁调速

当调压资源用尽后才能开始实施磁削(磁场削弱)调速,即进行磁削调速时,电源电压已达到最大值且保持不变。若不考虑电枢回路的电阻压降,则有

n?Uan1?2 ,?Ce?n2?1即磁削后电动机转速升高,转速与磁通基本成反比关系。

磁削后的转速都高于额定磁场时的转速,磁削后的人为特性总是处于固有特性(额定磁通之特性)的上方。

弱磁调速就是以额定电压、额定磁通对应的转速为最低转速的一种调速方法,磁通越小,转速越高。磁削时的速率特性如图2所示。

图2 牵引电动机磁削时的速率特性

3.分析相控电力机车传动系统电气线路的类型及作用。

答:相控电力机车传动系统电气线路按其功能作用可分为主电路、辅助电路和控制电路三大部分。 电力机车主电路是高电压、大电流的大功率动力回路,是产生牵引力和制动力的主体电路,具有功率大、控制复杂、工作条件恶劣及空间受限制等特点。主电路的结构、性能在很大程度上决定着电力机车的性能、成本等技术经济指标。主电路由受电弓、主断路器、避雷器、高压电流互感器、牵引变压器、牵引变流装置、牵引电动机、平波电抗器、制动电阻及其相连接的电气开关元件等组成,它应满足机车启动、调速及制动三个基本工作状态的要求。

辅助电路主要由提供三相交流电的劈相装置和各种辅助机械拖动电动机等组成。劈相装置就是一个单-三相交流电源变换装置,一般有旋转机组劈相机和静止变流劈相机两种形式,国产SS系列电力机车主要采用旋转机组劈相机。辅助电路依靠劈相机将单相交流电变换为三相交流电,供给各辅助机械拖动电动机,驱动通风机、油泵、空压机等装置工作,为保障主电路的正常工作提供冷却条件以及控制动力。它是保证主电路发挥功率和实现牵引性能所必需的电路。

控制电路就是执行司机的控制命令或意图,完成对主电路、辅助电路间接控制的低压电路,它由各种主令电器及控制模块组成,承担着列车传动系统的控制以及与外部行车指挥系统的信息传输、储存任务。

4.电力机车的相控调压方式选择原则是什么?

答:在交-直流传动电力机车中,相控调压方式不同,将使变压器二次绕组结构和整流电路方式都有很大的差别,这些直接影响机车性能和机车制造成本。采用何种调压方式,要将机车的用途、使用范围、使用条件等因素综合考虑,力求机车具有较高的性价比。

桥式整流电路对变压器的利用率要比中抽式高,一般都采用桥式整流电路。

若需要进行再生制动,整流电路必须要采用全控桥式,能够在四象限运行。α ≤90° 时工作在整流状态,α >90° 时工作在逆变(再生)状态。

若需要电阻制动,整流电路可选用半控桥式,电路结构简单,功率因数较高,控制角范围为0°<α ≤180° 。

绝大多数相控电力机车整流电路采用多段半控桥顺序控制电路,既能够提高功率因数,又能够实施电阻制动。

第5页共15页

5.电阻制动受哪些因素影响?

答:电阻制动受以下5个因素的制约:

(1) 最大励磁电流的限制,如图2中曲线OA’所示; (2) 最大制动电流的限制,如图2中A’C线所示;

(3) 黏着力的限制,如图2中曲线FAB所示; (4) 牵引电动机换向条件的限制,如图2中曲线CD段所示; (5) 机车构造速度的限制,如图中曲线DE所示。

电阻制动工作范围

6.什么是加馈制动?简述加馈电阻制动的作用与过程。

答:当机车制动速度较低时,电阻制动将按照最大恒励磁电流特性制动,制动力与机车速度成正比关系变化,速度越低,制动电流越小,制动力越小,制动效果越差。

为了改善电阻制动在低速时的制动特性,只要维持制动电流不随机车速度降低而下降,就可以改善低速时的制动能力。要维持制动电流不变,必须要有外部电源对制动回路补充供电,以使制动电流(电枢电流)不变,实现低速恒制动力特性,这种方法称为“加馈电阻制动”。

IZ?Ud?Ea RZ要维持制动电流不变,加馈电压必须要与发电机感应电势同步反向变化,即发电机输出电压减小多少就由Ud补偿多少,直至加馈整流桥输出电压达到最大值为止,加馈制动功率达到最大值,加馈制动过程结束。加馈制动过程如下图中AB段所示,SS3B型电力机车从A点恒制动力运行到B点,机车速度已降低到20km/h以下,制动范围明显扩大了。

加馈所需要的电能由接触网、牵引变压器提供。

SS3B型电力机车电阻制动特性曲线

7.简述影响相控电力机车牵引特性的主要因素及牵引特性的工作范围。

答:机车牵引特性是指机车轮周牵引力F与机车速度v之间的关系。相控电力机车的牵引特性受到整流器、牵引电动机、机车的结构参数等诸多因素的限制,这些限制如图1所示。 (1)黏着限制(曲线1)

机车的牵引力应该小于动轮与钢轨之间由黏着条件所决定的极限黏着力,否则动轮将发生空转。

第6页共15页

(2)牵引电动机允许最大电流Iamax限制(曲线2)

牵引电动机在低速、大电流工况运行时,换向过程所能承受的最大电流就是允许最大电流,该电流大于牵引电动机的额定电流。对干线电力机车,一般为额定电流的1.2~1.4倍,个别可达到1.6倍。对客运电力机车,由于其传动装置的传动比较小,因此,由牵引电动机电流限制计算所得的牵引力也小,曲线2可能如图1中的虚线2’所示,低于黏着限制之下,这时机车的牵引特性限制应是曲线2’,而不是曲线1。

(3)牵引电动机允许的最高电压Uamax限制(曲线3)

直流牵引电动机因受换向器片间电压和电位条件的限制,牵引电动机有一个最高工作电压。曲线3为最高端电压,而且是满磁场(固定分路)时,由牵引电动机特性计算所得到的牵引特性。 (4)整流器输出特性确定的最大电压Udmax限制(曲线4)

在电力机车通用技术条件(GB 3317—82)中规定:机车受电弓电压额定值为25 kV,在20kV~29 kV范围内能正常工作,所以整流器输出的最高电压也随受电弓处电压的变化而变化。

图1相控电力机车牵引特性限制曲线

(5)牵引电动机功率PMmax限制(曲线5)

当牵引电动机在曲线3工作时,电压已达到最高允许值,电流由列车的阻力而定。

在曲线3的右侧,牵引电动机的工作电压不变,进入磁场削弱下工作。曲线5是由牵引电动机额定电压和额定电流计算所得的牵引特性,显然这是一条恒功率的限制曲线。 (6)最深磁场削弱βmin限制(曲线6、7)

牵引电动机的换向受最深磁场削弱限制,最深磁场削弱系数由牵引电动机设计确定,磁削是在最高电压下进行的。由于电压限制有电动机端电压和整流器输出最高电压之分,图1中曲线6相当于电动机在最高端电压、最深磁场削弱时的牵引特性。曲线7则相当于整流器最大输出电压、最深磁场削弱时的牵引特性。

(7)机车构造速度Vg的限制(曲线8)

机车的运行速度应小于由机车走行部构造所决定的最大安全速度(构造速度)。

由上述限定条件可知,电力机车牵引特性的工作范围,应在图1中粗实线决定的范围内。 8.简述我国干线相控电力机车主电路的基本技术特征。 答:我国干线相控电力机车主电路基本技术特征如下:

⑴主电路的调压方式均采用多段整流桥串联形式,以三段不等分半控整流桥为主; ⑵货运机车几乎都采用三级磁场削弱方式,客运机车全部采用无级磁场削弱方式; ⑶电气制动主要采用加馈电阻制动方式,唯有SS7/SS7B/SS7c采用再生制动方式; ⑷货运机车基本都设置了无功功率补偿装置,客运机车没有设置功率补偿装置; ⑸牵引电动机主要采用串励方式,只有SS7系列采用复励方式。 9.简述相控电力机车辅助电路的组成及其功能。

答:电力机车辅助电路分为电源电路、负载电路和保护电路三部分。

电源电路为机车各辅助设备提供工作电源。辅助设备的拖动采用异步电动机,根据负载的不同,既需要单相供电,又需要三相供电。国产主型相控电力机车习惯于采用旋转机组式劈相机,提供三相工频交流电源。

负载电路:三相负载电路是由拖动辅助机械的辅助电动机组成的。辅助设备主要是风机、泵类及电热设备,主要为主变压器、主整流柜、平波电抗器、牵引电动机及制动电阻等提供通风、冷却,为

第7页共15页

机车提供风源,为司乘人员提供必要的生活环境。单相负载电路主要是加热元器件,包括司机室侧墙、后墙暖风机、脚炉、电热玻璃等。

保护电路:电力机车辅助电路的保护系统主要由过电压、过电流、接地、零电压和单机过载保护等部分组成。

(1)过电压保护

辅助系统发生的过电压是由系统内电器的开闭操作引起的,属于内部过电压,保护方法与主电路内部过电压保护相同,通过在辅助绕组两端并接R-C吸收电路即可。 (2)过电流保护

辅助电路的过电流主要是由于设备过载、电路短路引起的,一般采用电流继电器监控电流的变化,当电流达到电流继电器的整定范围时,电流继电器动作,直接使主断路器跳闸,全车停电对辅助系统进行保护。 (3)接地保护

辅助电路在运行中也会出现接地故障,需要进行保护。其接地保护原理、电路均与主电路接地保护相似,仍采用有源接地保护系统。设置接地继电器,作为监测与执行元件。 (4)零电压保护

零电压保护为接触网失电进行保护,以防止供电失压后再送电时可能出现的事故。零压保护只对失电时间超过1s的失电现象进行保护,对于失电时间小于1s,或受电弓高速滑行中出现的短暂离线失电,系统不予保护。一般零电压保护电路还为高压电器柜门联锁装置提供一路工作电源,作为门联锁装置的交流侧保护。 (5)辅机过载保护

为了防止辅助设备在运行中,因出现缺相、断路、堵转等引起的过电流,需要对功率比较大、比较重要的辅助设备进行过载保护,在电路中分别设置保护装置。当某一设备发生过载,相应的过载保护装置动作,切断该设备电路中接触器线圈回路,使接触器断开,此设备停止运行。 10.简述电力牵引交流传动技术组成。

答:电力牵引交流传动技术由核心层技术、辅助层技术和相关层技术三部分组成。

核心层技术主要包括牵引变流器技术、牵引控制及其网络控制技术、交流牵引电动机技术和牵引变压器技术;辅助层技术主要包括冷却与通风技术、辅助变流器技术、控制电源技术、保护技术和电磁兼容与布线技术;相关层技术主要包括司机操纵技术、车体轻量化技术、转向架技术、空气制动技术和高压侧检测技术。

11.简述交流传动列车牵引特性及控制策略。

答:列车牵引特性是指列车牵引力随速度变化的关系曲线。交流传动列车电力牵引运行可分为三个运行区,即启动加速区、恒功率运行区和提高速度区或自然特性区,这三个运行调节区如图所示。 (1)启动加速区(恒转矩特性区)

启动加速(恒转矩)区通过控制变流器的输出,使其输出电压与频率按正比例关系变化,即牵引电动机的气隙磁通保持不变。

由下式可知,只要保持转差频率恒定,即可得到恒定的转矩。转差频率值越接近临界转差频率,在整个速度范围内可获得的转矩越大,这就是所谓的恒转矩特性。

Tem与f1无关,仅取决于f2的大小。因为磁通恒定,显然E1与f1是线性比例关系。定子电压U1与f1近似呈线性关系。在频率较低时,r1的影响不能忽略,此时电压应相对有所提高。

随着电动机转速的上升,电压提高,牵引电动机的输出功率增大。但是电压的提高受到电动机功率或逆变器最大电压的限制,于是电压提高到一定的值后将维持不变,或者电压不再正比于f1上升。此后,电动机将以恒功率输出为条件进行电压和频率的控制。

第8页共15页