运动控制课程设计 联系客服

发布时间 : 星期一 文章运动控制课程设计更新完毕开始阅读62e983325a8102d276a22f95

本次本次课程设计的变压器联结组别采用的是主变压器为Yd11和同步变压器为Yy4。当然不同的联结组别的选择会产生不同的效果和作用。

以下为变压器联结组别选择的国家标准:

为了制造和使用上的方便,国家规定三相双绕组电力变压器的标准联结组为

Yyn0、YNy0、Yy0、Yd11、YNd11。其中Yyn0用于低压侧电压为400~230V的配电变压器中,供给动力与照明混合负载。变压器的容量可达1800kV.A,高压侧的额定电压不超过35kV。YNy0用于高压侧需接地的场合。

Yy0只供三相动力负载。Yd11用在低压侧电压超过400V的线路中,最大容

量为31500kV.A,高压侧电压在35kV以下。YNd11用在高压侧需要接地且低压侧电压超过400V的线路中。

三相变压器的绕组联结时应注意利用单相变压器接成三相变压器组时,要注意绕组的极性。把三相心式变压器的一、二次侧三相绕组接成星形或三角形时,其首端都应为同名端;一、二次绕组相序要一致。

2.3触发电路的选择和同步

晶闸管的电流容量越大,要求的触发功率越大。对于大中电流容量的晶闸管,为了保证其触发脉冲具有足够的功率,往往采用由晶体管组成的触发电路。本次课程设计的触发电路采用的是锯齿波同步的触发电路,该电路由五个部分组成,分别为同步环节;锯齿波形成及脉冲移相环节;脉冲形成、放大和输出环节;双脉冲形成环节;强触发环节。

选择好触发电路后,就要考虑同步的问题。所谓同步,就是要求触发脉冲和加于晶闸管的电源电压之间必须保持频率一致和相位固定。实现同步的主要方法是通过同步变压器TS的不同联结组别向各触发单元提供不同相位的交流电压,称之为同步信号电压,确保变流装置中各晶闸管能按规定的顺序和时刻获得触发脉冲并有序地工作。通常,同步变压器的联结组别与主电路整流变压器联结组别、主电路形式、负载性质以及采用何种触发电路均有关系。实际上所谓三相触发电路同步定相,就是在主电路整流变压器联结组别、主电路形式、负载提出的所需移相范围以及触发电路均已确定的条件下,如何经过简便的方法来确定同步变压器联结组别并给各触发单元选取相应的同步电压。

由于同步变压器二次电压要分别接到各单元触发电路,而各单元触发电路又均有公共“接地”端点,所以同步变压器的二次侧选择星形联结。由于整流变压器与同步变压器一次绕组总是接在同一的三相电源上,所以对同步变压器联结组别的确定可以采用简化的电压相量图解方法。

- -

3

2.4双闭环控制电路的工作原理

首先是对双闭环控制电路的稳态工作原理的分析,可以根据系统的稳态结构框图来分析,分析稳态工作原理的关键是要了解PI调节器的稳态特征,一般都会存在着两种状况:饱和——输出达到限幅值,不饱和——输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。当调节器不饱和时,PI的作用使输入偏差电压在稳态时总为零。在实际的正常运行时,电流调节器是不会达到饱和状态的。因此,只有转速调节器饱和和不饱和两种情况。

当转速调节器不饱和时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零。而当转速调节器饱和时,ASR输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差的单电流闭环调节系统。在稳态工作点上,转速是由给定电压决定的,ASR的输出量是由负载电流决定的,而控制电压的大小则同时取决于转速和负载电流。PI调节器的输出量在动态过程中决定于输入量的积分,到达稳态时,输入为零,输出的稳态值与输入无关,而是由它后面环节的需要决定的。

双闭环调速系统的静特性在负载电流小于Idm时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到Idm时,对应于转速调节器的饱和输出,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内、外两个闭环的效果。这样的静特性比带电流截止负反馈的单闭环系统静特性好。

接着是对其起动过程的分析,由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成I、II、III三个阶段。

第I阶段(电流上升阶段)。突加给定电压后,经过两个调节器的跟随作用,

Uc、Ud0、Id都跟着上升,但是在Id没有达到负载电流IdL以前,电动机还不能转动。当Id?IdL后,电动机开始起动。由于机电惯性的作用,转速不会很快增长,因而转速调节器ASR的输入偏差电压仍较大,其输出电压保持限幅值,强迫电枢电流迅速上升。直到电流调节器很快就压制了Id的增长,标志着这一阶段的结束。

第II阶段(恒流升速阶段)。这是起动过程中的主要阶段。在这个阶段中,ASR始终是饱和的,转速环相当于开环,系统成为在恒值电流给定下的电流调节系统,基本上保持电流Id恒定,因而系统的加速度恒定,转速呈线性增长,对电流调节系统来说,E是一个线性渐增的扰动量,为了克服它,Ud0和Uc也必须基本上按线性增长,才能保持Id恒定。

- - 4

第III阶段(转速调节阶段)。当转速上升到给定值时,转速调节器ASR的输入偏差减小到零,但其输出却由于积分作用还维持在限幅值,所以电动机仍在加速,使转速超调。转速超调后,ASR输入偏差电压变负,使它开始退出饱和状态,Ui*和Id很快下降。但是,只要Id仍大于负载电流IdL,转速就继续上升。直到Id?IdL时,转矩Te?TL,则dndt?0,转速n才到达峰值。此后,电动机开始在负载的阻力下减速,当Id?IdL时,直到稳定。

综上所述,双闭环直流调速系统的起动过程有以下三个特点:(1)饱和非线性控制(2)转速超调(3)准时间最优控制。

最后是对其动态抗扰性能的分析,对于调速系统,最重要的动态性能是抗扰性能。主要是抗负载扰动和抗电网电压扰动的性能。

负载扰动作用在电流环之后,因此只能靠转速调节器ASR来产生抗负载扰动的作用。

就静特性而言,系统对它们的抗扰效果是一样的。但从动态性能上看,由于扰动作用点不同,存在着能否及时调节的差别。负载扰动能够比较快地反映到被调量n上,从而得到调节,而电网电压扰动的作用电力被调量稍远,调节作用受到延滞,因此单闭环调速系统抑制电压扰动的性能要差一点。 综上所述,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗绕性能大有改善。因此,在双闭环系统中,由电网电压波动引起的转速动态变化会比单闭环系统小得多。

- -

5

3. 设计计算书

3.1整流装置的计算

3.1.1变压器副方电压

为了减小电网与整流装置的相互干扰,使整流主电路与电网隔离,为此需要配置整流装置。但由于电网电压波动、管子本身的压降以及整流变压器等效内阻造成的压降等。所以设计时U2?应按下式计算:

U2??Udn?n?UT

AB(cos?min?CUdlI2I2n)式中:Udn为负载的额定电压,取220V ?UT为整流元件的正向导通压降,取1V

n为电流回路所经过的整流元件的个数,桥式电路取2 A为理想情况下??0?时Ud0U2,取2.34 B为实际电压与理想空载电压比,取0.93

?min为最小移相角,取10?

C为线路接线方式系数,取0.5 Udl为变压器阻抗电压比,取0.05

I2IN为二次侧允许出现的最大电流与额定电流之比,取0.816 所以将数据代入 U2??220?2?1?106.3V

2.34?0.93?(0.98?0.5?0.05?0.816)3.1.2变压器和晶闸管的容量

(1)变压器容量

理想条件下变压器二次容量为

S2?3U2I2?3?U2??0.816IN?4.476KVA (2) 晶闸管容量

- - 6