考研名解大题答案参考 联系客服

发布时间 : 星期二 文章考研名解大题答案参考更新完毕开始阅读52c8a48b84868762caaed5b0

2、心肌收缩力与前负荷和后负荷的关系是什么?心肌收缩力的决定因素是什么?NE和Ach对心肌收缩力的影响原因是什么?

[考点]心肌收缩功能的影响因素。自主神经对心肌收缩功能的影响。 [解析](1)心肌的前负荷:心室的前负荷是指心舒末期心腔中充盈的血量。它相当于心室舒张末期容量,与静脉回心血量成正比。静脉回心血量愈多,心室舒张末期容量愈大,这时构成心壁的肌纤维被拉得也愈长。在一定范围内,心肌纤维的初长(即收缩前的长度)愈长,心肌收缩的力量愈强,因而搏出量愈多,相反,静脉回心血量少,搏出量也减少。在正常情况下,这种心肌的自身调节可使静脉回心血量与搏出量之间保持动态平衡。若前负荷过大,使心肌初长超过一定限度,心肌收缩的力量反而减弱。

心肌的后负荷:心肌的后负荷是指心室收缩过程中遇到的阻力,即为动脉血压。在心肌收缩能力和前负荷都不变的条件下,动脉血压升高时,后负荷增大,动脉瓣将推迟开放,致使等容收缩期延长,射血期缩短;加之心肌纤维缩短的速度和幅度降低,结果搏出量减少,射血期末心室内的剩余血量便相对增加,造成心室舒张末期容量增大,心肌初长增加,收缩力量增强,以克服较大的后负荷,使搏出量恢复到原有水平。心的这种自身调节过程,对维持正常血液循环,满足机体代谢需要具有重要意义。然而,如果动脉血压持续维持较高水平(如高血压病),心室将长期处于收缩加强的状态下工作,可造成心肌肥厚。

(2)控制心肌收缩力的决定因素是心肌中的活化横桥数和肌凝蛋白的ATP酶的活性。

(3)乙酰胆碱对心肌细胞的抑制作用,主要是作用于肌细胞膜上的M型胆碱能受体,提高细胞膜对钾正离子的通透性,加速钾的外流,使最大舒张电位值增大,呈超极化状态,从而使肌细胞兴奋能力减低。 去甲肾上腺素对心肌细胞的兴奋作用,是使细胞膜对钾等正离子通透性降低和对钙的二价正离子通透性增高,导致窦房结细胞4期自动除极加速,同时使心房肌和心室肌细胞2期内流的钙的二价正离子增加,有利于兴奋收缩耦联过程,使心肌细胞收缩力增强。

3、试述心肌自动节律性、兴奋性、传导性和收缩性的特点。 [考点]心肌的电生理特性。

[解析]在心肌生物电活动的基础上产生了心肌的自动节律性、传导性和兴奋性的特点,心肌的收缩性也具有与骨骼肌不同的特点。 (1)自动节律性

心脏特殊传导系统各部分的自律性高低不同,在正常情况下窦房结的自律性最高(约为每分钟100次)。房室交界次之(约为每分钟50次),心室内传导组织最低(每分钟约20~40次)。正常心脏的节律活动是受自律性最高的窦房结所控制。窦房结是主导整个心脏兴奋和收缩的正常部位,为心脏的正常起搏点。其他特殊传导组织的自律性不能表现出来称为潜在起搏点。以窦房结为起搏点的心脏活动,称为窦性心律;以窦房结以外的部位为起搏点的心脏活动,称为异位起搏点引起的异位节律。在窦房结的活动受到抑制或窦房结兴奋下传受到阻碍,以及潜在起搏点的自律性过高等情况下,可以出现异位节律。心脏跳动的节律称为心律。如果心跳的时间间隔不等,就称为心律不齐。 (2)传导性

心肌细胞传导兴奋的能力,称为传导性。心肌细胞兴奋传导的原理和神经纤维相似,也是以局部电流来解释。即由于兴奋部位和其邻近安静部位的膜之间发

生电位差,产生局部电流,刺激安静部位的膜产生兴奋。 心脏内的特殊传导系统和一般心肌细胞都有传导性。正常兴奋的传导主要依靠特殊传导系统。当窦房结发生兴奋后,兴奋经结间束和心房肌传布到整个心房,其中结间束的分支组成的房间束,可能是将兴奋从右心房传向左心房的通路。与此同时,窦房结的兴奋也通过结间束迅速传到房室交界,约需0.06秒。房室交界是正常兴奋由心房传入心室的唯一通路,但其传导速度缓慢,占时较长,约需 0.1秒,这种现象称为房室“延搁”。然后兴奋由房室交界经房室束及其左、右束支,浦肯野纤维迅速传到心室肌,首先使左、右心室心内膜侧心室肌兴奋,然后再将兴奋由内膜向外膜侧心室肌扩布,引起整个心室兴奋。这种传导方式对保持心室的同步收缩具有重要意义。现将兴奋在心脏内的传导途径简示如下。

窦房结→结间束→房室交界→房室束及左、右束支→浦肯野纤维→心房肌 (延搁) 心室肌

房室交界处兴奋传导的“延搁”具有重要的生理意义,它使心房与心室的收缩不在同一时间进行,只有当心房兴奋收缩完毕后才引起心室兴奋收缩,这样心室可以有充分的时间充盈血液,有利于射血。 (3)兴奋性

心肌细胞的兴奋性和其他可兴奋组织一样,在其受到刺激而发生兴奋的过程中,会发生周期性变化,但有其特点。

1)心肌细胞兴奋性的周期性变化:心室肌细胞兴奋后,其兴奋性变化可分为以下几个时期

①有效不应期:从心肌细胞去极化开始到复极化3期膜内电位约-55毫伏的期间内,不论给予多么强大的刺激,都不能使膜再次去极化或局部去极化,这个时期称为绝对不应期。在复极化从-55毫伏到达- 60毫伏的这段时间内,心肌细胞兴奋性开始恢复,对特别强大的刺激可产生局部去极化(局部兴奋),但仍不能产生扩布性兴奋,这段时间称为局部反应期。绝对不应期和局部反应期合称为有效不应期,即由0期开始到复极化3期-60毫伏为止的这段不能产生动作电位的时期。

②相对不应期:从有效不应期完毕,膜电位-60毫伏到-80毫伏的期间,用阈上刺激才能产生动作电位(扩布性兴奋)。这一段时间称为相对不应期。此期心肌兴奋性逐渐恢复,但仍低于正常。

③超常期:在复极化完毕前,从膜内电位由约-80毫伏到-90毫伏这一时间内,膜电位的水平较接近阈电位,引起兴奋所需的刺激较小,即兴奋性较高,因此将这段时期称为超常期。最后,膜复极化完毕到达静息电位(或舒张电位)时,兴奋性恢复正常。

每次兴奋后兴奋性发生周期性变化的现象是所有神经和肌肉组织的共性,但心肌兴奋后的有效不应期特别长,一直延长到心肌机械收缩的舒张开始以后。也就是说,在整个心脏收缩期内,任何强度的刺激都不能使心肌产生扩布性兴奋。心肌的这一特性具有重要意义,它使心肌不能产生象骨骼肌那样的强直收缩,始终保持着收缩与舒张交替的节律性活动,这样心脏的充盈和射血才可能进行。 2)期前收缩和代偿间歇:在心室肌正常节律性活动的过程中,如果在有效不应期之后到下一次窦房结兴奋传来之前,受到人工刺激或异位起搏点传来的刺激,可引起心室肌提前产生一次兴奋和收缩,称为期前兴奋和期前收缩(亦称额外收缩或早搏)。在期前收缩之后出现一个较长的心室舒张期,称为代偿间歇。这是因为期前兴奋也有自己的有效不应期。当下一次窦房结的兴奋传到心室肌

时,正好落在期前兴奋的有效不应期中,因而未能引起心室兴奋,必须等到再一次窦房结的兴奋传来才发生反应,所以构成代偿间歇。 (4)收缩性

心肌细胞和骨骼肌细胞的收缩原理相似。在受到刺激时都是先在膜上产生兴奋,然后再通过兴奋一收缩偶联,引起肌丝相互滑行,造成整个细胞的收缩。其收缩特点有三:

1)心肌的肌浆网不发达,终池贮钙的二价正离子量比骨骼肌少因而心肌细胞收缩时对细胞外液中钙的二价正离子的浓度依赖性较大。

2)心室肌的收缩期相当于有效不应期,在收缩期内心肌不能再接受刺激产生兴奋和收缩,因而心肌细胞不产生强直收缩。

3)心脏收缩具有“全或无“的特点,即心脏的收缩一旦引起,它的收缩强度就是近于相等的,而与刺激的强度无关。这是因为心肌细胞之间的闰盘区电阻很低,兴奋易于通过;另外心脏内还有特殊传导系统可加速兴奋的传导,故当某一处的细胞产生兴奋,可引起组成心房或心室的所有心肌细胞都在近于同步的情况下进行收缩。因此,可将心房和心室看成功能上的“合胞体”。

1.Compensatory pause:代偿间歇,一次期前收缩后伴有的一段较长的心脏舒张期。

2.血—脑脊液屏障:一些大分子物质较难从血液进入脑脊液,仿佛在血液和脑脊之间存在着某种屏障,称血—脑脊液屏障。 3.内皮舒张因子(EDRF):指由血管内皮生成和释放的舒血管物质,其化学结构可能是一氧化氮,它可以使血管平滑肌的鸟苷酸环化酶激活,cGMP浓度升高,游离钙离子浓度减低,故血管舒张。

4. electrocardiogram:心电图,将测量电极放置在人体表面的一定部位记录出来的心动周期电变化曲线。

5.动脉压力感受性反射:又称减压反射,动脉血压升高时,引起压力感受性反射,使心率减慢,外周血管阻力下降,血压下降。

6.血压:指血管内液体对管壁单位面积产生的压强的大小。

7. Basal electric thythm:基本电节律:组织、细胞能够在没有外来刺激的条件下,自动的发生节律性兴奋变化,这种控制其变化的电节律称为基本电节律。 8.快反应细胞:从电生理特性上,把0期除极的速率快的细胞称快反应细胞。 9.体循环平均充盈压及其正常值:是机体心脏暂时停止射血,血流也暂停,此时在循环系统各处所测得的压力都是相同的,这一压力数值为体循环平均充盈压,正常值为0.93kPa(7mmHg)。

10.isometric contraction:等长收缩,当后负荷达到一定程度足以抵抗肌肉收缩产生的最大张力,肌肉不再表现缩短的收缩。

11. Ejection fraction and normal value:射血分数及其正常值:搏出量占心室舒张末期容积的百分比。其正常值是55%—65%。 12. 搏功(及公式):心室一次收缩所作的功。公式为:搏功(g-m)=搏出量(cm3)×(1/1000)×(平均动脉压—平均左房压mmHg)×(13.6g/cm3)。

13.异位心律: 由窦房结以外的心肌潜在起搏点所引起的心脏节律性活动。 14.舒张压:心室舒张时,主动脉压下降,在心室舒张末期动脉血压的最低值称为舒张压。

15. 微循环:微动脉和微静脉间的血液循环,进行血液和组织的物质交换。 16.收缩期储备:静息状态下心室收缩末期容积与余血量之差为收缩期储备。

17.脉搏:指动脉脉搏,在每个心动周期中,动脉内的压力变化发生周期性波动而引起的动脉血管发生的搏动。

18.血脑屏障:指血液与脑组织之间的屏障。可限制某些物质在两者间自由交换,故对保持脑组织周围稳定的化学环境和防止血液中有害物质进入脑内有重要意义。毛细血管的内皮,基膜,和星状胶质细胞的血管周足等结构可能是血脑屏障的形态学基础。

19.内皮素:是内皮细胞合成和释放的由21个氨基酸构成的多肽,是已知最强的缩血管物质之一。

20.cardiac cycle心动周期:心脏每一次收缩和舒张,构成一个机械活动周期,称为心动周期。

1、试述心肌细胞跨膜电位的形成及其和心脏自动节律的关系。 [考点]心肌的生物电现象及其简要的原理。

[解析] 心室肌细胞安静时,细胞膜处于外正内负的极化状态。静息电位约-90毫伏。心室肌细胞静息电位产生的原理基本上和神经纤维相同,主要是由于安静时细胞内高浓度的K+向膜外扩散而造成。

其动作电位与神经纤维相比较有很大差别,表现为复极化过程有明显特征。通常将全过程分为0、1、2、3、4期。(1)去极化过程(0期):去极化过程形成动作电位的上升支(0期),其形成机制亦与神经纤维相同。此期电位变化幅度约120mV,持续时间1~2ms。(2)复极化过程:该过程形成动作电位下降支,分为四期。1期(快速复极初期):心室肌细胞去极达顶峰后立即开始复极,膜内电位迅速下降到0mV左右,形成1期,占时约10ms。K+外流是1期快速复极的主要原因。2期(缓慢复极期):此期复极非常缓慢,膜内电位下降速度极慢,停滞在0mV左右,形成平台状,故2期又称平台期,历时约100~150ms。该期是心室肌细胞动作电位区别于神经纤维和骨骼肌的主要特征,也是动作电位持续时间较长,有效不应期特别长的原因。形成的机制是本期内有Ca2+内流和K+外流同时存在,缓慢持久的Ca2+内流抵消了K+外流,致使膜电位保持在0mV附近。3期(快速复极末期):此期膜内电位迅速下降到静息电位水平(-90mV),形成3期,以完成复极化过程,历时约100~150ms。K+快速外流是3期快速复极的原因。4期(静息期):此期膜电位虽已恢复到静息电位水平,但在动作电位形成过程中,膜内Na+、Ca2+增多,膜外K+增多,致使膜内外的这几种离子浓度有所改变。本期内,细胞膜离子泵积极地进行着逆浓度梯度转运,把Na+和Ca2+排到细胞外,同时将K+摄回细胞内,以恢复细胞内外离子的正常浓度,保持心肌细胞的正常兴奋能力。

心肌兴奋后的有效不应期特别长,一直延长到心肌机械收缩的舒张开始以后。也就是说,在整个心脏收缩期内,任何强度的刺激都不能使心肌产生扩布性兴奋。心肌的这一特性具有重要意义,它使心肌在自律性兴奋来临时,不能产生象骨骼肌那样的强直收缩,从而始终保持着收缩与舒张交替的节律性活动,这样心脏的充盈和射血才可能进行。

2、试述动脉血压的形成原理及其影响因素。 [考点]动脉血压形成及影响因素。 [解析](1)动脉血压的形成。

动脉血压的形成有赖于心射血和外周阻力两种因素的相互作用。心舒缩是按一定时间顺序进行的,所以在心动周期的不同时刻,动脉血压的成因不尽相同,数值也不同。