工业微生物基本类型及其基础知识 联系客服

发布时间 : 星期三 文章工业微生物基本类型及其基础知识更新完毕开始阅读272af21b964bcf84b9d57b6f

超相加反馈抑制超相加反馈抑制是一种既不同于协同反馈抑制又不同于累积反馈抑制。对一个分支代谢途径中,几种末端产物单独过量时,仅产生对共同途径的第一个酶部分的抑制。如果每种末端产物都过量时,其抑制作用则超过各种末端产物单独过量时抑制的总和。

例如,在嘌呤核苷酸的生物合成途径中,催化第一步反应的酶,5-磷酸核糖-1-焦磷酸(PRPP)的酰胺基转移酶,可被各种嘌呤核苷酸产物(如AMP、GMP)所抑制。例如,一定量的GMP或AMP仅能抑制5-磷酸核糖-1-焦磷酸酰胺基转移酶活力的10%,而当二者混合时,则可抑制其酶活力的50%。因为这些嘌呤核苷酸与5-磷酸核糖-1-焦磷酸并无结构相似性,又因该酶是一种调节酶,GMP和AMP可能分别结合在该酶的不同部位上。

4,酶活性调节的分子机制解释酶活性调节机制的理论: (1)别构调节理论(其核心是酶分子构象的改变)

(2)酶分子的化学修饰理论(其核心是酶分子结构的改变)。

四、初级代谢的调节初级代谢的调节方式有:

1,产能代谢的调节:能荷调节 2,核蛋白体合成的调节

3,氨基酸、核苷酸合成代谢的调节

五、次级代谢的调节次级代谢的调节方式有:

1,初级代谢对次级代谢的调节 2,碳代谢物的调节作用 3,氮代谢物的调节作用 4,磷酸盐的调节作用

5,次级代谢中的诱导作用及产物的反馈作用 6,次级代谢中细胞膜透性调节

第六节 微生物代谢产物的过量产生

一,提高初级代谢产物产量的方法

我们知道,初级和次级代谢产物在遗传控制、合成时期、合成途径等方面是存在差异的,因而获得发酵产物过量生产的方法也不同。由于次级代谢产物的合成远离初级代谢的主要途径,微生物细胞对其合成控制较弱,因此,改变环境条件易于影响其表达,基因型改变后的产量变异幅度也较大,而初级代用产物则与此相反。这在选择提高代谢产物方法时应予考虑。提高初级代谢产物产量的方法主要有以下几种: 1,使用诱导物

与糖类和蛋白质降解有关的水解酶类大都属诱导酶类,因此向培养基中加入诱导物就会增加胞外酶的产量。如加入槐糖(1,2—β—D—葡二糖)诱导木霉菌的纤维素酶的生成,木糖诱导半纤维素酶和葡萄糖异构酶的生成等。但诱导物的价格往往比较贵,经济上未必合算。加入廉价的含有诱导物的原料,如槐豆英等某些种籽皮中含有槐糖,玉米芯富含木聚糖,培养过程中可陆续被水解产生槐糖、木糖,这都是经常采用的方法。但是,玉米芯等这类不溶性聚合物的分解过程缓慢,以其为唯一碳源时,培养周期比较长,产品的体积生产率仍难大幅度提高。可考虑先使微生物在廉价的可溶性碳源中迅速生长,形成大量菌体后,再加入诱导物诱导水解酶类生成的方法。

诱导物的浓度过高及能被迅速利用时,也会发生酶合成的阻遏,这在纤维二糖对纤维素酶的产生,木二糖对半纤维素酶产生中都己观察到,这也是使用诱导物时应予注意的。

2,除去诱导物——选育组成型产生菌

在发酵工业中,要选择到一种廉价、高效的诱导物是不容易的,分批限量加入诱导物在工艺上也多不便,更为有效的方法是改变菌株的遗传特性,除去对诱导物的需要,即选育组成型突变株。通过诱变处理,使调节基因发生突变,不产生有活性的阻遏蛋白,或者操纵基因发生突变不再能与阻遏物相结合,都可达到此目的。迄今尚未见由于结构基因发生改变而得到组成型的报道。

已设计出多种选育组成型突变株的方法,其主要原则是创造一种利于组成型菌株生长而不利于诱导型菌株生长的培养条件,造成对组成型的选择优势以及适当的识别两类菌落的方法,从而把产生的组成型突变株选择出来。例如把大肠杆菌半乳糖苷酶的诱导型菌株经诱变处理后,先在含乳糖的培养基中培养,由于组成型突变株半乳糖苷酶的合成不需诱导即能产生,因此可较诱导型的出发菌株较早开始生长,在一定时期内菌数的增加便较快,如持续进行培养时,由于诱导酶形成后,原菌株生长速率亦逐渐增加,这种选择性造成的差别就会减少,可用交替在乳糖、葡萄糖培养基中进行培养的方法。两者利用葡萄糖时的生长速率是相同的,乳糖为碳源造成的组成型菌株的优势生长会持续下去,最后由平板分离就易于得到组成型突变株。以乳糖为限制性生长因子进行连续培养时,生长速率较低的诱导型菌株就会被冲洗掉,也是利用了上述原理。诱导型菌株不经诱变处理,利用其自发突变,用连续培养方法,也能得到组成型突变株。

在平板上识别组成型突变株的方法,主要是利用在无诱导物存在时进行培养,它能产生酶,加入适当的底物进行反应显示酶活加以识别。经常使用酶解后可以有颜色变化的底物,便于迅速捡出组成型菌落。如甘油培养基平板中培养大肠杆菌时,诱导型菌株不产酶,组成型菌株可产生半乳糖苷酶。菌落长出后喷布邻硝基苯半乳糖苷,组成型菌株的菌落由于能水解它而呈现硝基苯的黄色,诱导型则无颜色变化。另如羧甲基纤维素被内切纤维素酶水解后,由于暴露出更多的还原性末端而能被刚果红所染色。可由此方便地检出纤维素酶产生菌。 3,降低分解代谢产物浓度,减少阻遏的发生

高分子的多糖类、蛋白质等的分解代谢产物(如能被迅速利用的单糖、氨基酸以及脂肪酸、磷酸盐等)都会阻遏分解其聚合物的水解酶类的生成。因此用限量流加这类物质或改用难以被水解的底物的方法,都可减少阻遏作用的发生,而获得较高的酶产量。但是由于它并未改变产生菌的遗传特性,只是暂时地改变了酶的合成速率,因此结果往往不稳定。更有效的方法是筛选抗降解物阻遏的突变栋。

4,解除分解代谢阻遏——筛选抗分解代谢阻退突变株

从遗传学角度来考虑,如调节基因发生突变,使产生的阻遏蛋白失活;不能与末端分解代谢产物结合,或操纵基因发生突变使阻遏蛋白不能与其结合,都能获得抗分解代谢阻遏的突变株。前者为隐性突变,后者为显性突变,都能由此导致酶的过量产生。

可以直接以末端代谢产物为底物来筛选抗阻遏突变株,如以葡萄糖、甘油为碳源筛选纤维系酶抗阻遏突变株。但更多地是利用选育结构类似物抗性菌株的方法。

它所依据的机制是,结构类似物由于在分子结构上与分解代谢的未端产物相