激光原理复习自整理 联系客服

发布时间 : 星期一 文章激光原理复习自整理更新完毕开始阅读17804cd3a32d7375a5178082

1.增益系数阈值:满足双程放大系数:K?r1r2exp(G??in)2L?1,

G??in-1ln(r1r2)??total,则G??total 2L00GDGD??total 2.增益系数下限:均匀:Gth???total 非均匀Gth?11?IM/IS(1?IM/IS)28?hv2?2??total3.粒子数反转分布阈值:?nth?,?n??nth才能产生激光

c2f(v)第三章

惠更斯-菲涅尔提出子波及子波干涉概念: 1.波传到的任意波点都是子波波源

2.各子波在空间某点相干叠加:薄面上各点均是相干子波源,惠-非原理提供用干涉解释衍射的基础,菲涅尔发展了惠更斯原理,深入了解衍射现象。 3.衍射基础,开腔模式基础

惠更斯-菲涅尔原理:设波面上一点p'光场复振幅u'?p'?,任意一点P光场复振幅

iku?p??4????u'?p'?e?ik???1?cos??ds'

光波模:能够存在于腔内,以某一波矢k为标志的驻波称为‘’。一种模式是电磁波运动的 一种类型,不同的模式以不同的k区分。同一k对应两个具有不同偏振方向的模。 腔的模:将光学谐振腔内肯能存在的电磁场的本征态称为模。 模特征:电磁场理论(横模),简谐频率(纵模),往返一次损耗功率,发散角 自再现模:把开腔镜面上经一次往返能再现的稳态场分布称为自再现模或横模。 往返损耗:自再现模往返一次的损耗。

往返位移:自再现模往返一次的相位变化,等于2?整数倍 横模:腔内垂直于光轴的横截面内的场分布称为横模

纵模:在腔的横截面内场分布是均匀的,而沿腔的轴线方向即纵向形成驻波,驻波的波节数由q决定将这种由整数q所表征的腔内纵向场分布称为纵模。q纵模系数,一个q一个驻波 谐振条件:光波在腔内往返一周总相移等于2?整数倍。2???2q? 驻波条件:光学腔长等于半波长整数倍。L'??L?q?2,v?c?谐振频率

模式的空间竞争:由于空间烧孔效应的存在,不同的纵模可利用空间内不同的粒子反转数获得增益,从而实现多纵模振荡。称为 高斯光束性质:

1.高斯光束在其轴线附近可看做是一种非均匀搞死球面波 2.传播过程中,曲率中心不断改变 3.振幅在横截面内为一高斯光束 4.强都集中在轴线及其附近 5.等相位面保持球面

高斯光束束腰半径:w??L 2????w2?2?球形等相面曲率半径:R0?z?1??0??

?z??????????z??z处界面内基模有效截面半径:w?z??w01????w2? ?0?腔面基模光斑有效截面半径:ws?2w0 基模远场发散角:2??222?2? ??L?w0光学谐振腔常用研究方法?几何光学、衍射积分方程方法

稳定球面腔的等价共价腔:任何一个共焦腔可以与无穷个稳定球面镜腔等价 一般稳定球面镜谐振腔与其等价共焦谐振腔,有什么相同和不同? 同:具有相同行波场通过等价共焦腔研究稳定球面谐振腔模式性质。腔内光场横向分布相同。 异:任何一个共焦腔与无数多个稳定球面腔等价。而任何一个稳定的球面腔唯一等价于一个共焦腔;共焦腔属于临界腔,而稳定球面腔属于稳定腔。模谐振频率不同

光学谐振腔腔内存在焦点:平面腔焦点都不在腔内,球面镜曲率半径R腔长L,2L>|R|则焦点在腔内。稳定腔若腔镜的中心在腔内则腔内存在焦点,一般的若高斯光束的束腰在腔内则对应的光学谐振腔腔内存在焦点。 稳定腔与非稳定谐振腔相比:

缺点:选模能力差,高阶横模也能起振;模式体积小,只适用与低增益介质;低损耗导致多模运转,输出功率小。

优点:稳定腔几何偏折损耗小,主要是衍射损耗;稳定腔光束半径有限,光波模式主要集中在腔轴附近。

非稳腔的优点:具有大的可控模体积,是适用于高功率激光器的腔型。可从腔中提取有用衍射耦合输出。容易鉴别和控制横模。易得到单端输出和准直的平行光束,得到方向性好的横模振荡

同一个光学谐振腔中的不同横模异同?相同点:谐振腔内光电磁场在垂直于其传播方向(横向)具有的稳定的场分布,称为横模,是谐振腔衍射损耗筛选的结果,与光波初始波形和特性无关,有谐振腔自身特性决定。都是光束在横向的场分布。不同点:基横模的强度分布比较均匀,光源的发散角小,且损耗最小,随着横模阶数的提高,强度分布不均匀,光束的发散角增大,且损耗较大。它们光斑形状、大小不一样,相位频率、偏振不一样。不同横模对应于不同的横向稳定光场分布和频率。

第四章 模式竞争:在均匀加宽的激光器中,开始时几个满足阈值条件的纵模在振荡过程中相互竞争,结果总是靠近中心频率的一个纵模获胜,形成稳定的振荡,其他的纵模都被抑制而熄灭。这种情况叫。

单模激光器的线宽极限:输出激光是一个略有衰减的有限长波列,具有一定的谱线宽度。由

自发辐射产生的无法排除谱线宽度称为极限线宽。实际激光器中由于各种不稳定因素,纵模频率本身的漂移远远大于极限线宽 增益的空间烧孔效应:在驻波腔激光器中,腔内形成一个驻波场,波腹处增益最小,而波节处

增益最大,沿光腔方向增益系数的这种非均匀分布称为空间烧孔效应

自选模:设三个纵模v1,v2,v3同时起振,随着振荡的持续光强I1,I2,I3逐渐增大,当光强足够大,(可与饱和光强Is比拟时)由于增益饱和,导致增益曲线在各频率处整体下降,结果各纵模由于增益系数小于阈值增益系数,先后熄灭,最后仅剩下最接近中心频率vo的一个纵模维持自激振荡,这一现象称烧空效应。

非均匀加宽介质激光器中,怎样实现烧孔重叠?减少纵模间隔;加深烧孔,从而加宽烧孔;置一纵模于中心频率,使两侧对称纵模重叠。

均匀加宽介质中有纵模竞争因为在均匀加宽介质中,当数个纵模同时起振时,各模式光场获得的增益是不同的,一个模式所获得的净增益由介质增益曲线在该模式频率处超过增益阈值线上的那部分大小来决定,靠近介质频率中心的纵模光场获得的净增益最大。随着各模光强的增加,出现饱和作用,激活介质的增益曲线均匀下降,不断有模式退出,直至仅存一个振荡模式。

非均匀加宽介质中有模竞争因为在非均匀加宽介质激光器中,若纵模频率间距较小,出现烧孔重叠,也存在模竞争现象。若激励较强,介质增益大,烧孔深,烧孔宽度大,使得相邻烧孔部分重叠,产生纵模之间竞争。

激光介质烧孔现象、形成机制,及其宏观表现,对激光器的性能有哪些影响?

纵向烧孔:由于腔内振荡模的驻波场分布,介质中沿腔轴向各点处光强周期性分布,致使介质增益的饱和程度沿腔轴向周期性分布,反转集居数密度亦出现相同的周期性分布。与驻波波节对应处的增益饱和最弱,反转集居数密度最高;与驻波波腹对应处的增益饱和最强,反转集居数密度最低。驻波腔中所出现的激活介质增益特性的这种周期性变化通常称之为增益的轴向空间烧孔效应。宏观表现:由于驻波腔激光器激活介质内增益轴向空间烧孔效应的存在,大大减小了相邻模之间的竞争,使优势模的邻模也能同时形成稳态振荡,不同纵模可以使用不同空间的激活粒子而同时产生振荡,这一现象将减轻纵模的空间竞争。性能影响:不同纵模消耗激活介质中空间不同部位的反转激活粒子,从而可建立起多纵模的稳态振荡。 横向烧孔:在驻波腔激光器中,除了上述沿腔轴向的增益空间烧孔外,对于能够起振的不同横模,由于各横模的模场在横截面上光强分布不同以及节点位置的差别,可能出现横向空间烧孔效应。宏观表现:横向空间烧孔效应的存在,为模光场主要分布在远离腔轴的高阶横模提供了可资利用的集居数反转密度,为高阶横模的起振提供了可能。性能影响:横向烧孔的存在,使均匀加宽激光器中易形成多个横模的稳态振荡。这不仅影响到激光器输出的线宽和单色性,亦会影响到输出光束的横向场分布和方向性。

若腔模偏离原子谱线中心,则在增益曲线上对称的烧出两个孔。这两个孔对应两种光场频率,但激光输出不是双色光。因为在激光器中,激光光波受谐振腔反射双向传播。沿z方向传播、频率为v1的光波,只会激发z向分速度为粒子群的受激辐射。V0为运动粒子的中心频率。而沿负z方向传播、频率为v1的光波,只会激发z向分速度为 粒子群的受激辐射。增益曲线上对称地烧出的两个孔对应粒子的表观中心频率,它们对称的分布在激光器工作介质的中心频率两侧,而光场频率始终为v1,即激光输出单色光

增益曲线上的烧孔如何形成,激光输出的稳定性与它有无关系?增益曲线上的烧孔是由非均匀加宽增益饱和效应产生的。由于非均匀加宽线型函数是众多的均匀加宽线型函数的包迹函数,当频率为va、光通量为Iva的准单色光入射到非均匀加宽的增益介质时,使中心频率为va的那群反转粒子发生饱和,对中心频率远离va的反转粒子不发生作用。饱和后的反转粒子对总的非均匀加宽增益曲线va处的增益贡献减小,所以在va处出现一个增益凹陷,

好像是Iva在增益曲线上烧了一个孔一样,这称为增益曲线的烧孔效应。激光输出光强的不稳定,事实上是烧孔面积产生变化的反映。而烧孔面积之所以产生变化,原因在于激光谐振频率的不稳定,导致原来谐振频率为v1的模式变为v2,而使得原来v1处的增益饱和效应逐渐消失,而v2处则由于增益饱和效应而产生频域烧孔,这时相应于v2处的烧孔面积必然相对原来v1处的烧孔面积有变化,有关系

空间烧孔发生在什么类型的介质中?烧孔有几种形式,各有什么弊端和可利用之处?空间烧孔发生在固体工作物质与液体激光器中。因为在固体工作物质中,激活粒子被束缚在晶格上,借助粒子和晶格的能量交换完成激发态的空间转移,激发态在空间转移半个波长所需的时间远远大于激光形成所需的时间,所以空间烧孔不易消除。在液体激光器中,由于激发态的空间转移时间也很长,因此烧孔取得反转粒子束密度消耗量不能由临近区域激活粒子的移入来抵消,空间烧孔也不能消除。烧孔有纵向烧孔和横向烧孔两种形式。A纵向烧孔弊端:建立起多纵模的稳态振荡,需用严格的模式选择技术才能可靠地实现单模稳态振荡。可供利用之处:采用“锁模技术”,使这些各自独立的纵模在时间上同步,即把它们的相位相互联系起来,激光器输出的将是脉宽极窄、峰值功率很高的光脉冲。而超短脉冲所形成的fs量级的光脉冲是对微观世界进行研究和揭示新的超快过程的重要手段。B横向烧孔弊端:当激励足够强时,增大输出激光的发散角,降低激光束的方向性。可供利用之处1为选横模提供装置2由于横向烧孔与光功率过大相关,故在腔内放入光折边晶体,可产生光折边现象3若希望得到大功率输出,横向烧孔可提供较大功率激光。 单纵模选取:短腔法、三反射镜法 单横模选取:光阑法、

横模选取:聚焦光阑法、腔内望远镜法 衍射损耗:镜面损耗

光学谐振腔的衍射损耗的大小与菲涅尔数成反比,与腔的几何参数有关,和横模的阶数有关,阶次越高光强分布越趋向于边缘,衍射损耗越大。 菲涅尔数:N,即从一个镜面中心看到另一个镜面上可划分的菲涅尔半波带的数目。表征损耗的大小。衍射损耗与N成反比。衍射损耗来源于光束衍射,衍射损耗的大小与腔镜的大小及距离有关。而菲涅耳数N与模的表面积和模的光斑面积有关,所以它在一定程度上反映了导致衍射损耗的另外两个因素:腔的几何结构和横模的阶数。

兰姆凹陷:非均匀增宽谱线的输出功率P随频率的变化曲线是钟形的,但在中心频率V=V0处,出现一个凹陷,称为兰姆凹陷。 兰姆凹陷法稳频:原理见课件!

兰姆凹陷稳频技术实际上就是稳定腔长。试述兰姆凹陷的成因及用处。兰姆凹陷稳频技术是利用兰姆凹陷的宽度远比谱线宽度窄,在V0附近频率V的微小改变,都将引起输出功率的显著变化,将谱线中心频率V0选作标准频率,通过对输出光强的监测,实时地确定工作频率现对V0的偏离,利用灵敏的腔长自动伺服,是极广频率稳定在V0上运转。当振荡纵模频率与介质中心频率之差满足,单纵模运转激光器驻波腔内往还传输的两束光在介质增益曲线上烧两个对于中心频率左右对称的孔,会开始部分重合,烧孔总面积减少,对应振荡模输出功率有所下降。直至模频率等于介质中心频率,两个烧孔完全重合,输出功率下降到极小,形成在振荡频率等于介质中心频率时极小输出功的现象,即兰姆凹陷。随着振荡纵模频率向介质中心频率趋近,激光器单模输出先增大后减小,在振荡频率等于介质中心频率时对应极小输出功率的现象,即兰姆凹陷。兰姆凹陷应用于单面激光器输出激光的稳频技术;应用于测量粒子跃迁均匀加宽线宽等。

兰姆凹陷只能出现在非均匀加宽的气体介质中,能使用兰姆凹陷作激光器输出光强的调制,围绕中心频率移动谐振频率即可实现光强调制,若从激光谐振频率不应移动的角度出发认为