中华人民共和国学科分类与代码国家标准(GBT13745-2009) 联系客服

发布时间 : 星期六 文章中华人民共和国学科分类与代码国家标准(GBT13745-2009)更新完毕开始阅读14dacd666394dd88d0d233d4b14e852458fb39c7

学科分类与代码

1 范围

本标准规定了学科分类原则、分类依据、编码方法,以及学科的分类体系和代码。 本标准适用于基于学科的信息分类、共享与交换,亦适用于国家宏观管理和部门应用。

本标准的分类对象是学科,不同于专业和行业。本标准的分类不能代替文献、情报、图书分类及学术上的各种观点。 2 术语和定义

下列术语和定义适用于本标准。

2.1

学科 discipline 相对独立的知识体系。 2.2

学科群 discipline group

具有某一共同属性的一组学科。每个学科群包含了若干个分支学科。 3 学科分类原则

3.1 科学性原则

根据学科所具备的客观的、本质的属性特征及其相互之间的联系,划分不同的从属关系和并列次序,组成一个有序的学科分类体系。 3.2 实用性原则

对学科进行分类和编码,应以满足国家宏观管理的应用需求为基本目标,列入到分类体系内的学科覆盖领域应全面、适中。 3.3 简明性原则

对学科层次的划分和组合,力求简单明了。 3.4 兼容性原则

考虑国内传统分类体系的继承性和实际使用的延续性,并注意提高国际可比性。 3.5 扩延性原则

根据现代科学技术体系具有高度动态性的特征,应为萌芽中的新兴学科留有余地,以便在分类体系相对稳定的情况下得到扩充和延续。 3.6 唯一性原则

在学科分类体系中,一个学科只能用一个名称、一个代码。某学科被调整变更后,其原有的分类代码撤销,不得再赋予其他学科使用。 4 学科分类依据

本标准主要依据学科的研究对象,学科的本质属性或特征,学科的研究方法,学科的派生来源,学科研究的目的与目标等五方面进行划分。 5 学科分类代码体系的说明

5.1 本标准所列学科应具备其理论体系和专门方法的形成;有关科学家群体的出现;有关研究机构和教学单位以及学术团体的建立并开展有效的活动;有关专著和出版物的问世等条件。

GB/T 13745—2009

5.2 本标准仅将学科分类定义到一、二、三级,共设62个一级学科或学科群、676个二级学科或学科群、2382个三级学科。一级学科之上可归属到科技统计使用的门类,门类不在标准中出现。门类排列顺序是:A 自然科学,代码为110~190;B 农业科学,代码为210~240;C 医药科学,代码为310~360;D工程与技术科学,代码为410~630;E人文与社会科学,代码为710~910。 5.3 本标准中学科排列次序和级别与学科重要程度无关。

5.4 本标准纳入了成长中的新兴学科,萌芽中的新兴学科暂不纳入。

5.5 在本分类体系,尤其在工程与技术科学分类体系中,出现的学科与专业、行业、产品名称相同,但其涵义不同。

5.6 分类体系中的名称,原则上用学科名称,考虑实际应用及学科分类层次的需要,有少量“学科群”名称出现。

5.7 一级学科根据情况,分别选用“××学”、“××科学”、“××科学技术”、“××工程”、“××工程技术科学”五种名称。

5.8 交叉或具有多重归属的学科,可在多处列类,只在一处赋予代码,其他相关位置不给代码,而在说明栏注“见×××××××(代码)”或“参见×××××××(代码)”。

5.9 一级学科下的分支学科,根据确定学科位置的不同特征进行划分,原则上取一个特征,考虑学科特点及使用需要,对有些学科用两种或两种以上特征划分。

5.10 本分类体系的学科遵循从理论到应用,从一般到个别,从抽象到具体,从通用到专用,从简单到复杂,从低级到高级,从宏观到微观的排列顺序。

5.11 标准中出现的学科分类层次和数量分布不均衡现象是各学科发展不平衡的客观实际所决定的。 5.12 本标准对某些横断学科、综合学科及某些特殊学科的处理方法

5.12.1 分类表中的“信息科学”是指小概念,不包括“计算机科学”。“信息科学与系统科学”的理论和技术部分,其性质与数学类似,排列在数学之后,考虑其发展前景,设为一级学科。“信息科学”和“系统科学”都以“控制论”、“系统论”和“信息论”为基础理论,很难分开,故暂列在一类。 5.12.2 考虑到工程与技术科学门类与自然科学及生产应用的映射关系,在该门类中设立“信息与系统科学相关工程与技术”、“自然科学相关工程与技术”、“产品应用相关工程与技术”等三个一级学科群,以归入基于自然科学或生产应用而派生出的各类工程技术学科或学科群,但早已形成的传统工程与技术一级学科(如化学工程、矿山工程技术、测绘科学技术等)则不在此列。

5.12.3 “环境科学技术及资源科学技术”、“安全科学技术”、“管理学”三个一级学科(群)属综合学科,本学科列在自然科学和社会科学之间。

5.12.4 根据我国实际情况,将“地理学”列入“地球科学”下二级学科,“人文地理学”列入“地球科学”,属特例。 6 编码方法

6.1 本标准的学科分类划分为一、二、三级学科三个层次,用阿拉伯数字表示。一级学科用三位数字表示,二、三级学科分别用两位数字表示,代码结构见图1。

× × × × × × × 三级学科

二级学科(或学科群) 一级学科(或学科群)

图1 学科分类代码结构

6.2 二、三级学科设“群体学科”,用数字“99”表示。

6.3 标准中所有代码,仅表示该学科在本分类体系中的级别和位置,不表示其他含义。

1

7 学科分类代码表

学科分类代码表见表1。

表1 学科分类代码表

代 码 110 11011 11014 11017 11021

表1 (续)

代 码 学 科 名 称 数学 数学史 数理逻辑与数学基础 演绎逻辑学 证明论 递归论 模型论 公理集合论 数学基础 数理逻辑与数学基础其他学科 数论 初等数论 解析数论 代数数论 超越数论 丢番图逼近 数的几何 概率数论 计算数论 数论其他学科 代数学 线性代数 群论 域论 李群 李代数 Kac-Moody代数 环论 模论 格论 泛代数理论 范畴论 同调代数 代数K理论 微分代数 说 明 亦称符号逻辑学 亦称元数学 包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等 学 科 名 称 代数编码理论 说 明 GB/T 13745—2009

表1 (续) 代 码 11024 11027 11031 11034 11037 11041 学 科 名 称 代数学其他学科 代数几何学 几何学 几何学基础 欧氏几何学 非欧几何学 球面几何学 向量和张量分析 仿射几何学 射影几何学 微分几何学 分数维几何 计算几何学 几何学其他学科 拓扑学 点集拓扑学 代数拓扑学 同伦论 低维拓扑学 同调论 维数论 格上拓扑学 纤维丛论 几何拓扑学 奇点理论 微分拓扑学 拓扑学其他学科 数学分析 微分学 积分学 级数论 数学分析其他学科 非标准分析 函数论 实变函数论 单复变函数论 多复变函数论 函数逼近论 调和分析 复流形 特殊函数论 函数论其他学科 说 明 包括黎曼几何学等 3